Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Keskinen, Erno Karvinen, Timo Dospel, Vladimir To¨ho¨nen, Mika Syrja¨nen, Teppo Koponen, Janne |
| Copyright Year | 2009 |
| Abstract | Cylinder grinding has been the subject for an intensive research, because delay-type resonances, commonly known as chatter-vibrations, have been reason for serious surface quality problems in industry [1]. As a result of this activity there is available a simulation platform, on which the complete grinding process including delay-resonances can be driven [2]. This platform consists of models for the grinder, for the cylindrical work piece and for the stone-cylinder grinding contact. The elastic cylinder model is based on analytical eigenfunctions in bending vibrations, which basis has been used to present the rotordynamic equations of cylinder in modal coordinates. Stone-cylinder interaction mechanism has been derived by combining the rules of mass and momentum transfer in the material removal process. The contribution of this paper is to update the platform to include the thermal effects of the work body. Following the method to use the eigenfunctions of a non-supported beam to describe the rotordynamic motion of the work body, a promising method could be to use in a similar way the eigenfunctions of a thermally isolated cylinder to solve the temperature distribution of the cylinder. The temperature distribution and terms related to the non-homogeneous boundary conditions will then be the input to the thermoelastic problem. It can be shown that the eigenfunction basis consists of trigonometric functions in axial and circumferential directions while the radial eigenfunctions are Bessel functions. The stone-cylinder interface has to be updated also to include thermal effects. A portion of the mechanical power is transferred to the work piece. The rest goes to the stone, to the material, which is removed and to the cutting coolant. On the other hand, thermal deformations modify the grinding forces, which are loading the work piece. The solution of the coupled thermal and thermoelastic problem will be done in terms of modal coordinates corresponding to the eigenfunction basis. This leads to numerical time integration of two groups of differential equations, the solution of which can be used to perform the temperature distributions and the corresponding thermal deformations. |
| Sponsorship | Design Engineering Division and Computers in Engineering Division |
| Starting Page | 1237 |
| Ending Page | 1246 |
| Page Count | 10 |
| File Format | |
| ISBN | 9780791848982 |
| DOI | 10.1115/DETC2009-87469 |
| e-ISBN | 9780791838563 |
| Volume Number | Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B |
| Conference Proceedings | ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference |
| Language | English |
| Publisher Date | 2009-08-30 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Whirls Temperature distribution Deformation Vibration Eigenfunctions Momentum Surface quality Grinding Bessel functions Chatter Cutting Simulation Temperature effects Differential equations Thermoelasticity Boundary-value problems Coolants Resonance Delays Tool grinders Cylinders |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|