Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ryan, J. Monroe Steven, W. Shaw Alan, H. Haddow Bruce, K. Geist |
| Copyright Year | 2009 |
| Abstract | Centrifugal pendulum vibration absorbers are used for reducing torsional vibrations in rotating machines. The most common configuration of these devices utilizes a bifilar suspension in which the absorber mass rides on a pair of rollers, whose mass is small compared to that of the absorber. These rollers are typically solid steel cylinders that allow the CPVAs to move along a prescribed path relative to the rotor, determined by the shape of machined cutouts on the rotor and the absorber mass. Previous studies have considered how to account for the roller dynamics in selecting the linear tuning characteristics of the absorber system, but have not quantified the errors induced by the common approximations that either ignores their effects completely, or does not account for the nonlinear aspects of their dynamics. In this paper we systematically investigate these effects. Specifically, we first show that there exists an absorber path for which the absorber/roller system maintains the same frequency of free oscillation over all physically possible amplitudes. This tautochronic path has been well known for the case with zero roller inertia, and herein, for the first time, the corresponding path with rollers is shown to exist and is constructed. In addition, we carry out an analysis of the steady-state response of the rotor/absorber/roller system in order to quantify the effects of various approximations commonly used in regards to the roller dynamics. This analysis is based on the equations of motion, scaled in such a manner so that they are amenable to a perturbation analysis, which includes the effects of rollers in the perturbation terms. It is shown that if one accounts for the linear tuning aspects of the rollers, the system response is essentially insensitive to the selection of the nonlinear tuning parameter, so long as it is close to the tautochronic value. This implies that the approximation commonly used for selecting absorber paths with rollers is adequate. |
| Sponsorship | Design Engineering Division and Computers in Engineering Division |
| Starting Page | 1225 |
| Ending Page | 1236 |
| Page Count | 12 |
| File Format | |
| ISBN | 9780791848982 |
| DOI | 10.1115/DETC2009-87431 |
| e-ISBN | 9780791838563 |
| Volume Number | Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B |
| Conference Proceedings | ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference |
| Language | English |
| Publisher Date | 2009-08-30 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Approximation Inertia (mechanics) Vibration Rollers Accounting Rotors Oscillations Equations of motion Steel Machinery Steady state Design Errors Dynamics (mechanics) Pendulums Shapes Vibration absorbers Cylinders |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|