Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Tang, Gongyue Yang, Chun Lam, Yee Cheong |
| Copyright Year | 2007 |
| Abstract | In this paper, we report numerical and experimental studies of the Joule heating-induced heat transfer in fabricated T-shape microfluidic channels. We have developed comprehensive 3D mathematical models describing the temperature development due to Joule heating and its effects on electrokinetic flow. The models consist of a set of governing equations including the Poisson-Boltzmann equation for the electric double layer potential profiles, the Laplace equation for the applied electric field, the modified Navier-Stokes equations for the electrokinetic flow field, and the energy equations for the Joule heating induced conjugated temperature distributions in both the liquid and the channel walls. Specifically, the Joule number is introduced to characterize Joule heating, to account for the effects of the electric field strength, electrolyte concentration, channel dimension, and heat transfer coefficient outside channel surface. As the thermophysical and electrical properties including the liquid dielectric constant, viscosity and electric conductivity are temperature-dependent, these governing equations are strongly coupled. We therefore have used the finite volume based CFD method to numerically solve the coupled governing equations. The numerical simulations show that the Joule heating effect is more significant for the microfluidic system with a larger Joule number and/or a lower thermal conductivity of substrates. It is found that the presence of Joule heating makes the electroosmotic flow deviate from its normal “plug-like” profiles, and cause different mixing characteristics. The T-shape microfluidic channels were fabricated using rapid prototyping techniques, including the Photolithography technique for the master fabrication and the Soft Lithography technique for the channel replication. A rhodamine B based thermometry technique, was used for direct “in-channel” measurements of liquid solution temperature distributions in microfluidic channels, fabricated by the PDMS/PDMS and Glass/PDMS substrates. The experimental results were compared with the numerical simulations, and reasonable agreement was found. |
| Sponsorship | Design Engineering Division and Computers and Information in Engineering Division |
| Starting Page | 643 |
| Ending Page | 651 |
| Page Count | 9 |
| File Format | |
| ISBN | 0791848043 |
| DOI | 10.1115/DETC2007-35136 |
| e-ISBN | 0791838064 |
| Volume Number | Volume 3: 19th International Conference on Design Theory and Methodology; 1st International Conference on Micro- and Nanosystems; and 9th International Conference on Advanced Vehicle Tire Technologies, Parts A and B |
| Conference Proceedings | ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference |
| Language | English |
| Publisher Date | 2007-09-04 |
| Publisher Place | Las Vegas, Nevada, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Viscosity Temperature Electrical conductivity Navier-stokes equations Plasma desorption mass spectrometry Electrokinetics Glass Electroosmosis Thermal conductivity Shapes Manufacturing Dielectric liquids Photolithography Electric fields Temperature distribution Laplace equations Computer simulation Computational fluid dynamics Electrical properties Lithography Dimensions Flow (dynamics) Temperature measurement Joules Heating Electrolytes Rapid prototyping Heat transfer coefficients Heat transfer Microfluidics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|