Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Daniel, E. Jordy Mohammad, I. Younis |
| Copyright Year | 2007 |
| Abstract | Squeeze film damping has a significant effect on the dynamic response of MEMS devices that employ perforated microstructures with large planar areas and small gap widths separating them from the substrate. Perforations can alter the effect of squeeze film damping by allowing the gas underneath the device to easily escape, thereby lowering the damping. By decreasing the size of the holes, the damping increases and the squeeze film damping effect increases. This can be used to minimize the out-of-plane motion of the microstructures toward the substrate, thereby minimizing the possibility of contact and stiction. This paper aims to explore the use of the squeeze-film damping phenomenon as a way to mitigate shock and minimize the possibility of stiction and failure in this class of MEMS devices. As a case study, we consider a G-sensor, which is a sort of a threshold accelerometer, employed in an arming and fusing chip. We study the effect of changing the size of the perforation holes and the gap width separating the microstructure from the substrate. We use a multi-physics finite-element model built using the software ANSYS. First, a modal analysis is conducted to calculate the out-of-plane natural frequency of the G-sensor. Then, a squeeze-film damping finite-element model, for both the air underneath the structure and the flow of the air through the perforations, is developed and utilized to estimate the damping coefficients for several hole sizes. Results are shown for various models of squeeze-film damping assuming no holes, large holes, and assuming a finite pressure drop across the holes, which is the most accurate way of modeling. The extracted damping coefficients are then used in a transient structural-shock analysis. Finally, the transient shock analysis is used to determine the shock loads that induce contacts between the G-sensor and the underlying substrate. It is found that the threshold of shock to contact the substrate has increased significantly when decreasing the holes size or the gap width, which is very promising to help mitigate stiction in this class of devices, thereby improving their reliability. |
| Sponsorship | Design Engineering Division and Computers and Information in Engineering Division |
| Starting Page | 913 |
| Ending Page | 921 |
| Page Count | 9 |
| File Format | |
| ISBN | 0791848027 |
| DOI | 10.1115/DETC2007-34843 |
| e-ISBN | 0791838064 |
| Volume Number | Volume 1: 21st Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C |
| Conference Proceedings | ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference |
| Language | English |
| Publisher Date | 2007-09-04 |
| Publisher Place | Las Vegas, Nevada, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Damping Microelectromechanical systems Accelerometers Dynamic response Modal analysis Stiction Computer software Micromachining Flow (dynamics) Modeling Physics Stress Transients (dynamics) Finite element model Pressure drop Sensors Shock (mechanics) Reliability Failure |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|