Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Kajishima, Takeo Kondo, Katsuya Takeuchi, Shintaro |
| Copyright Year | 2015 |
| Abstract | We developed a direct numerical simulation (DNS) method of solid-fluid two-phase flows to study the effects of heat conductivity within a solid particle and the particle motion on the heat transfer. Heat transfer and particle behaviors were studied for different ratios of heat conductivity (solid to liquid) and solid volume fractions. The simulation results emphasize the effect of temperature distributions within the particles, and the heat transfer through each particle plays an important role for the motion of the particulate flow. The particle-laden flow in a two-dimensional channel of instable thermal stratification, namely hot wall at the bottom and cold wall at the top, is simulated. In the two-dimensional computation, the heat transfer attenuates by increasing the neutral conductive particles because of the resistance to the thermal convection. In case of highly conductive particles, the thermal convection and conductions are enhanced to some extent of addition but the overload of particles suddenly reduces the intensity of convection, resulting in the lower heat transfer. The inverse gradient of mean temperature is observed particularly in case of moderate loading of neutral conductive particles. It is due to the modulation of the profile of convection cells. Most of the above-mentioned findings are reproduced by the fully three-dimensional simulation. |
| Sponsorship | Fluids Engineering Division |
| File Format | |
| ISBN | 9780791857328 |
| DOI | 10.1115/AJKFluids2015-07513 |
| Volume Number | Volume 1A: Symposia, Part 2 |
| Conference Proceedings | ASME/JSME/KSME 2015 Joint Fluids Engineering Conference |
| Language | English |
| Publisher Date | 2015-07-26 |
| Publisher Place | Seoul, South Korea |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature distribution Temperature Computer simulation Shear flow Thermal stratification Flow (dynamics) Convection Fluids Simulation results Simulation Computation Two-phase flow Particulate matter Thermal conductivity Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|