Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Xie, Sihong Verscheure, Olivier Fan, Wei Ren, Jiangtao Peng, Jing |
| Abstract | Transferring knowledge from one domain to another is challenging due to a number of reasons. Since both conditional and marginal distribution of the training data and test data are non-identical, model trained in one domain, when directly applied to a different domain, is usually low in accuracy. For many applications with large feature sets, such as text document, sequence data, medical data, image data of different resolutions, etc. two domains usually do not contain exactly the same features, thus introducing large numbers of "missing values" when considered over the union of features from both domains. In other words, its marginal distributions are at most overlapping. In the same time, these problems are usually high dimensional, such as, several thousands of features. Thus, the combination of high dimensionality and missing values make the relationship in conditional probabilities between two domains hard to measure and model. To address these challenges, we propose a framework that first brings the marginal distributions of two domains closer by "filling up" those missing values of disjoint features. Afterwards, it looks for those comparable sub-structures in the "latent-space" as mapped from the expanded feature vector, where both marginal and conditional distribution are similar. With these sub-structures in latent space, the proposed approach then find common concepts that are transferable across domains with high probability. During prediction, unlabeled instances are treated as "queries", the mostly related labeled instances from out-domain are retrieved, and the classification is made by weighted voting using retrieved out-domain examples. We formally show that importing feature values across domains and latent semantic index can jointly make the distributions of two related domains easier to measure than in original feature space, the nearest neighbor method employed to retrieve related out domain examples is bounded in error when predicting in-domain examples. Software and datasets are available for download. |
| Starting Page | 91 |
| Ending Page | 100 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781605584874 |
| DOI | 10.1145/1526709.1526723 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-04-20 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Text mining Latent High dimensional Transfer learning Missing value |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|