Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Ying, Lei |
| Abstract | Mean-field analysis is an analytical method for understanding large-scale stochastic systems such as large-scale data centers and communication networks. The idea is to approximate the stationary distribution of a large-scale stochastic system using the equilibrium point (called the mean-field limit) of a dynamical system (called the mean-field model). This approximation is often justified by proving the weak convergence of stationary distributions to its mean-field limit. Most existing mean-field models concerned the light-traffic regime where the load of the system, denote by ρ, is strictly less than one and is independent of the size of the system. This is because a traditional mean-field model represents the limit of the corresponding stochastic system. Therefore, the load of the mean-field model is ρ=limN-> ∞ $ρ^{(N)},$ where $ρ^{(N)}$ is the load of the stochastic system of size N. Now if $ρ^{(N)}->$ 1 as N -> ∞ (i.e., in the heavy-traffic regime), then ρ=1. For most systems, the mean-field limits when ρ=1 are trivial and meaningless. To overcome this difficulty of traditional mean-field models, this paper takes a different point of view on mean-field models. Instead of regarding a mean-field model as the limiting system of large-scale stochastic system, it views the equilibrium point of the mean-field model, called a mean-field solution, simply as an approximation of the stationary distribution of the finite-size system. Therefore both mean-field models and solutions can be functions of N. The proposed method focuses on quantifying the approximation error. If the approximation error is small (as we will show in two applications), then we can conclude that the mean-field solution is a good approximation of the stationary distribution. |
| Starting Page | 49 |
| Ending Page | 49 |
| Page Count | 1 |
| File Format | |
| ISBN | 9781450350327 |
| DOI | 10.1145/3078505.3078592 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-06-05 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Mean-field approximations Large-scale stochastic systems Stein's method The-power-of-two-choices Heavy traffic analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|