Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Hardiman, Stephen J. Katzir, Liran |
| Abstract | Online social networks have become a major force in today's society and economy. The largest of today's social networks may have hundreds of millions to more than a billion users. Such networks are too large to be downloaded or stored locally, even if terms of use and privacy policies were to permit doing so. This limitation complicates even simple computational tasks. One such task is computing the clustering coefficient of a network. Another task is to compute the network size (number of registered users) or a subpopulation size. The clustering coefficient, a classic measure of network connectivity, comes in two flavors, global and network average. In this work, we provide efficient algorithms for estimating these measures which (1) assume no prior knowledge about the network; and (2) access the network using only the publicly available interface. More precisely, this work provides three new estimation algorithms (a) the first external access algorithm for estimating the global clustering coefficient; (b) an external access algorithm that improves on the accuracy of previous network average clustering coefficient estimation algorithms; and (c) an improved external access network size estimation algorithm. The main insight offered by this work is that only a relatively small number of public interface calls are required to allow our algorithms to achieve a high accuracy estimation. Our approach is to view a social network as an undirected graph and use the public interface to retrieve a random walk. To estimate the clustering coefficient, the connectivity of each node in the random walk sequence is tested in turn. We show that the error of this estimation drops exponentially in the number of random walk steps. Another insight of this work is the fact that, although the proposed algorithms can be used to estimate the clustering coefficient of any undirected graph, they are particularly efficient on social network-like graphs. To improve the network size prior-art estimation algorithms, we count node collision one step before they actually occur. In our experiments we validate our algorithms on several publicly available social network datasets. Our results validate the theoretical claims and demonstrate the effectiveness of our algorithms. |
| Starting Page | 539 |
| Ending Page | 550 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781450320351 |
| DOI | 10.1145/2488388.2488436 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-05-13 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Estimation Social network Clustering coefficient Sampling |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|