Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Hong, Liangjie Smola, Alexander J. Ahmed, Amr |
| Abstract | With the availability of cheap location sensors, geotagging of messages in online social networks is proliferating. For instance, Twitter, Facebook, Foursquare, and Google+ provide these services both explicitly by letting users choose their location or implicitly via a sensor. This paper presents an integrated generative model of location and message content. That is, we provide a model for combining distributions over locations, topics, and over user characteristics, both in terms of location and in terms of their content preferences. Unlike previous work which modeled data in a flat pre-defined representation, our model automatically infers both the hierarchical structure over content and over the size and position of geographical locations. This affords significantly higher accuracy --- location uncertainty is reduced by 40% relative to the best previous results [21] achieved on location estimation from Tweets. We achieve this goal by proposing a new statistical model, the nested Chinese Restaurant Franchise (nCRF), a hierarchical model of tree distributions. Much statistical structure is shared between users. That said, each user has his own distribution over interests and places. The use of the nCRF allows us to capture the following effects: (1) We provide a topic model for Tweets; (2) We obtain location specific topics; (3) We infer a latent distribution of locations; (4) We provide a joint hierarchical model of topics and locations; (5) We infer personalized preferences over topics and locations within the above model. In doing so, we are both able to obtain accurate estimates of the location of a user based on his tweets and to obtain a detailed estimate of a geographical language model. |
| Starting Page | 25 |
| Ending Page | 36 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781450320351 |
| DOI | 10.1145/2488388.2488392 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-05-13 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Non-paremetric bayesian models Geolocation Topic models Twitter Chinese restaurant process User profiling |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|