WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units (GPGPU-2)
  2. Understanding software approaches for GPGPU reliability
Loading...

Please wait, while we are loading the content...

Accelerating cosmological data analysis with graphics processors
High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs
GPU acceleration of a production molecular docking code
Accelerating phase unwrapping and affine transformations for optical quadrature microscopy using CUDA
Performance analysis of accelerated image registration using GPGPU
Accelerating linpack with CUDA on heterogenous clusters
hiCUDA: a high-level directive-based language for GPU programming
Architecture-aware optimization targeting multithreaded stream computing
QR decomposition on GPUs
3D finite difference computation on GPUs using CUDA
Optimization of tele-immersion codes
Understanding software approaches for GPGPU reliability

Similar Documents

...
Understanding software approaches for gpgpu reliability.

...
Exploiting uniform vector instructions for GPGPU performance, energy efficiency, and opportunistic reliability enhancement

Article

...
Metric-Based Quality Evaluations for Iterative Software Development Approaches Like Agile

Article

...
Understanding error propagation in GPGPU applications

Article

...
Effective Software Testing Approaches

...
Comparative analysis of Bayesian and classical approaches for software reliability measurement

Article

...
Understanding software through empirical reliability analysis

Article

...
Using the GPGPU for scaling up mining software repositories

Article

...
Conditional software specification & assurance: A practical assessment of contract-based approaches

Article

Understanding software approaches for GPGPU reliability

Content Provider ACM Digital Library
Author Zhou, Huiyang Dimitrov, Martin Mantor, Mike
Abstract Even though graphics processors (GPUs) are becoming increasingly popular for general purpose computing, current (and likely near future) generations of GPUs do not provide hardware support for detecting soft/hard errors in computation logic or memory storage cells since graphics applications are inherently fault tolerant. As a result, if an error occurs in GPUs during program execution, the results could be silently corrupted, which is not acceptable for general purpose computations. To improve the fidelity of general purpose computation on GPUs (GPGPU), we investigate software approaches to perform redundant execution. In particular, we propose and study three different, application-level techniques. The first technique simply executes the GPU kernel program twice, and thus achieves roughly half of the throughput of a non-redundant execution. The next two techniques interleave redundant execution with the original code in different ways to take advantage of the parallelism between the original code and its redundant copy. Furthermore, we evaluate the benefits of providing hardware support, including ECC/parity protection to on-chip and off-chip memories, for each of the software techniques. Interestingly, our findings, based on six commonly used applications, indicate that the benefits of complex software approaches are both application and architecture dependent. The simple approach, which executes the kernel twice, is often sufficient and may even outperform the complex ones. Moreover, we argue that the cost is not justified to protect memories with ECC/parity bits.
Starting Page 94
Ending Page 104
Page Count 11
File Format PDF
ISBN 9781605585178
DOI 10.1145/1513895.1513907
Language English
Publisher Association for Computing Machinery (ACM)
Publisher Date 2009-03-08
Publisher Place New York
Access Restriction Subscribed
Subject Keyword Reliability Gpgpu
Content Type Text
Resource Type Article
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...