Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Do, Synho Pien, Homer Jang, Byunghyun Kaeli, David |
| Abstract | Optimizing program execution targeted for Graphics Processing Units (GPUs) can be very challenging. Our ability to efficiently map serial code to a GPU or stream processing platform is a time consuming task and is greatly hampered by a lack of detail about the underlying hardware. Programmers are left to attempt trial and error to produce optimized codes. Recent publication of the underlying instruction set architecture (ISA) of the AMD/ATI GPU has allowed researchers to begin to propose aggressive optimizations. In this work, we present an optimization methodology that utilizes this information to accelerate programs on AMD/ATI GPUs. We start by defining optimization spaces that guide our work. We begin with disassembled machine code and collect program statistics provided by the AMD Graphics Shader Analyzer (GSA) profiling toolset. We explore optimizations targeting three different computing resources: 1) ALUs, 2) fetch bandwidth, and 3) thread usage, and present optimization techniques that consider how to better utilize each resource. We demonstrate the effectiveness of our proposed optimization approach on an AMD Radeon HD3870 GPU using the Brook+ stream programming language. We describe our optimizations using two commonly-used GPGPU applications that present very different program characteristics and optimization spaces: matrix multiplication and back-projection for medical image reconstruction. Our results show that optimized code can improve performance by 1.45x--6.7x as compared to unoptimized code run on the same GPU platform. The speedup obtained with our optimized implementations are 882x (matrix multiply) and 19x (back-projection) faster as compared with serial implementations run on an Intel 2.66 GHz Core 2 Duo with a 2 GB main memory. |
| Starting Page | 62 |
| Ending Page | 70 |
| Page Count | 9 |
| File Format | |
| ISBN | 9781605585178 |
| DOI | 10.1145/1513895.1513903 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-03-08 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Brook+ Optimization Gpgpu |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|