Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Lewis, Brian T. Adl-Tabatabai, Ali-Reza Majeti, Deepak Shpeisman, Tatiana Kaleem, Rashid Hu, Chunling Barik, Rajkishore Ni, Yang |
| Abstract | There is growing interest in using GPUs to accelerate general-purpose computation since they offer the potential of massive parallelism with reduced energy consumption. This interest has been encouraged by the ubiquity of integrated processors that combine a GPU and CPU on the same die, lowering the cost of offloading work to the GPU. However, while the majority of effort has focused on GPU acceleration of regular applications, relatively little is known about the behavior of irregular applications on GPUs. These applications are expected to perform poorly on GPUs without major software engineering effort. We present a compiler framework with support for C++ features that enables GPU acceleration of a wide range of C++ applications with minimal changes. This framework, Concord, includes a low-cost, software SVM implementation that permits seamless sharing of pointer-containing data structures between the CPU and GPU. It also includes compiler optimizations to improve irregular application performance on GPUs. Using Concord, we ran nine irregular C++ programs on two computer systems containing Intel 4th Generation Core processors. One system is an Ultrabook with an integrated HD Graphics 5000 GPU, and the other system is a desktop with an integrated HD Graphics 4600 GPU. The nine applications are pointer-intensive and operate on irregular data structures such as trees and graphs; they include face detection, BTree, single-source shortest path, soft-body physics simulation, and breadth-first search. Our results show that Concord acceleration using the GPU improves energy efficiency by up to 6.04× on the Ultrabook and 3.52× on the desktop over multicore-CPU execution. |
| Starting Page | 33 |
| Ending Page | 43 |
| Page Count | 11 |
| File Format | |
| ISBN | 9781450326704 |
| DOI | 10.1145/2544137.2544165 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-02-15 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Compiler optimization Energy efficiency Integrated gpu programming |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|