Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Liu, Yan Si, Luo Zhang, Dan |
| Abstract | Most traditional supervised learning methods are developed to learn a model from labeled examples and use this model to classify the unlabeled ones into the same label space predefined by the models. However, in many real world applications, the label spaces for both the labeled/training and unlabeled/testing examples can be different. To solve this problem, this paper proposes a novel notion of Serendipitous Learning (SL), which is defined to address the learning scenarios in which the label space can be enlarged during the testing phase. In particular, a large margin approach is proposed to solve SL. The basic idea is to leverage the knowledge in the labeled examples to help identify novel/unknown classes, and the large margin formulation is proposed to incorporate both the classification loss on the examples within the known categories, as well as the clustering loss on the examples in unknown categories. An efficient optimization algorithm based on CCCP and the bundle method is proposed to solve the optimization problem of the large margin formulation of SL. Moreover, an efficient online learning method is proposed to address the issue of large scale data in online learning scenario, which has been shown to have a guaranteed learning regret. An extensive set of experimental results on two synthetic datasets and two datasets from real world applications demonstrate the advantages of the proposed method over several other baseline algorithms. One limitation of the proposed method is that the number of unknown classes is given in advance. It may be possible to remove this constraint if we model it by using a non-parametric way. We also plan to do experiments on more real world applications in the future. |
| Starting Page | 1343 |
| Ending Page | 1351 |
| Page Count | 9 |
| File Format | |
| ISBN | 9781450308137 |
| DOI | 10.1145/2020408.2020608 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-08-21 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Serendipitous learning Maximum margin classification Label space |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|