Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Boire, Richard |
| Abstract | In many data mining exercises, we see information that appears on the surface to demonstrate a particular conclusion. But closer examination of the data reveals that these results are indeed misleading. In this session, we will examine this notion of misleading results in three areas: Statistical Issues Statistical issues such as multicollinearity and outliers can impact results dramatically. We will first outline how these statistical issues can provide misleading results. At the same time, we will demonstrate how the data mining practitioner overcomes these issues through data analysis approaches that provide both more meaningful and non-misleading results to the business community. Overstating of Results From a business standpoint, we will also look at results that appear to be too good to be true. In other words, there appears to be some overstating of results within a given data mining solution. Initially, we will discuss how to identify these situations. Secondly, we will outline what causes this overstatement of results and detail our approach on how we would overcome this predicament. Overfitting Another topic for discussion is overfitting of results. This is particularly the case when building predictive models. In this section of the seminar, we will define what overfitting is and why it is becoming more relevant for understanding by the business community. Once again, analytical approaches will be discussed in terms of how to best handle this issue. We present two case studies that demonstrate how our principled 4-step approach can be used to solve challenging data mining problems. These 4 steps are as follows: How to identify the problem How we construct the right data environment to conduct our analytics What kind of analytics are employed which include techniques such as correlation analysis, EDA reports, logistic regression, and gains charts. More importantly, we discuss how to interpret the output in terms of the actual impact to the business (i.e. increased response rate and ultimately increased ROI.) How do we apply the learning to a future initiative and what were the actual results. |
| Starting Page | 785 |
| Ending Page | 785 |
| Page Count | 1 |
| File Format | PDF MP4 |
| ISBN | 9781450308137 |
| DOI | 10.1145/2020408.2020543 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-08-21 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Cross-sell and up-sell marketing Segmentation. Data mining Roi optimization Predictive analytics Financial services |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|