Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Prats, Xavier Vilardaga, Santi |
| Abstract | Air traffic predictability is paramount in the air traffic system in order to enable concepts such as Trajectory Based Operations (TBO) and higher automation levels for self-separation. Whereas in simulated environments 4D conflict-free trajectory optimisation has shown good potential in the improvement of air traffic efficiency, its application to real operations has been very challenging due to the current lack of information sharing between airspace users. Consequently, such operations are still very limited in scope and rarely attempted in dense traffic situations. Better predictability of other traffic future states would be an enabler for each aircraft to fly its user preferred route without decreasing safety in a self-separation context. But this is not an easy task when basic aircraft parameters such as aircraft weight, performance data or airline strategies are not available at the time of prediction. In this paper the authors propose to compensate this hindrance by continuously integrating the state of the surounding traffic to improve the ownship's knowledge of other aircraft's dynamics. Specifically, conventional position (and velocity) messages, as coming from Automatic Dependent Surveillance Broadcast (ADS-B), are integrated at the ownship. Then, an optimisation problem is formulated, using optimal control theory, that minimises the error with the known states, having the parameters of study (i.e. mass) as decision variables. A scenario with two departing trajectories is used to demonstrate the effectiveness of this parameter estimation method. In it, the take-off mass of the potential intruder is estimated on-board the ownship and its impact to conflict detection and resolution is presented, demonstrating the big improvements in predictability and safety. |
| Starting Page | 75 |
| Ending Page | 84 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450335621 |
| DOI | 10.1145/2899361.2899369 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-09-30 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Trajectory prediction Mass estimation Optimal control Trajectory optimisation Self-separation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|