Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Svartz, Jules Faugère, Jean-Charles |
| Abstract | We propose an efficient algorithm to solve polynomial systems of which equations are globally invariant under an action of the symmetric group $G_{N}$ acting on the variable $x_{i}$ with $σ(x_{i})$ = $x_{σ(i)}$ and the number of variables is a multiple of N. For instance, we can assume that swapping two variables (or two pairs of variables) in one equation gives rise to another equation of the system (perhaps changing the sign). The idea is to apply many times divided difference operators to the original system in order to obtain a new system of equations involving only the symmetric functions of a subset of the variables. The next step is to solve the system using Gröbner techniques; this is usually several order faster than computing the Gröbner basis of the original system since the number of solutions of the corresponding ideal, which is always finite has been divided by at least N!. To illustrate the algorithm and to demonstrate its efficiency, we apply the method to a well known physical problem called equilibria positions of vortices. This problem has been studied for almost 150 years and goes back to works by von Helmholtz and Lord Kelvin. Assuming that all vortices have same vorticity, the problem can be reformulated as a system of polynomial equations invariant under an action of $G_{N}.$ Using numerical methods, physicists have been able to compute solutions up to N ≤ 7 but it was an open challenge to check whether the set of solution is complete. Direct naive approach of Gröbner bases techniques give rise to hard-to-solve polynomial system: for instance, when N = 5, it takes several days to compute the Gröbner basis and the number of solutions is 2060. By contrast, applying the new algorithm to the same problem gives rise to a system of 17 solutions that can be solved in less than 0.1 sec. Moreover, we are able to compute all equilibria when N ≤ 7. |
| Starting Page | 170 |
| Ending Page | 178 |
| Page Count | 9 |
| File Format | |
| ISBN | 9781450312691 |
| DOI | 10.1145/2442829.2442856 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2012-07-22 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|