Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kim, Jeremie S. Mutlu, Onur Patel, Minesh |
| Abstract | Modern DRAM-based systems suffer from significant energy and latency penalties due to conservative DRAM refresh standards. Volatile DRAM cells can retain information across a wide distribution of times ranging from milliseconds to many minutes, but each cell is currently refreshed every 64ms to account for the extreme tail end of the retention time distribution, leading to a high refresh overhead. Due to poor DRAM technology scaling, this problem is expected to get worse in future device generations. Hence, the current approach of refreshing all cells with the worst-case refresh rate must be replaced with a more intelligent design. Many prior works propose reducing the refresh overhead by extending the default refresh interval to a higher value, which we refer to as the target refresh interval, across parts or all of a DRAM chip. These proposals handle the small set of failing cells that cannot retain data throughout the entire extended refresh interval via retention failure mitigation mechanisms (e.g., error correcting codes or bit-repair mechanisms). This set of failing cells is discovered via retention failure profiling, which is currently a brute-force process that writes a set of known data to DRAM, disables refresh and waits for the duration of the target refresh interval, and then checks for retention failures across the DRAM chip. We show that this brute-force approach is too slow and is detrimental to system execution, especially with frequent online profiling. This paper presents reach profiling, a new methodology for retention failure profiling based on the key observation that an overwhelming majority of failing DRAM cells at a target refresh interval fail more reliably at both longer refresh intervals and higher temperatures. Using 368 state-of-the-art LPDDR4 DRAM chips from three major vendors, we conduct a thorough experimental characterization of the complex set of tradeoffs inherent in the profiling process. We identify three key metrics to guide design choices for retention failure profiling and mitigation mechanisms: coverage, false positive rate, and runtime. We propose reach profiling, a new retention failure profiling mechanism whose key idea is to profile failing cells at a longer refresh interval and/or higher temperature relative to the target conditions in order to maximize failure coverage while minimizing the false positive rate and profiling runtime. We thoroughly explore the tradeoffs associated with reach profiling and show that there is significant room for improvement in DRAM retention failure profiling beyond the brute-force approach. We show with experimental data that on average, by profiling at 250ms above the target refresh interval, our first implementation of reach profiling (called REAPER) can attain greater than 99% coverage of failing DRAM cells with less than a 50% false positive rate while running 2.5x faster than the brute-force approach. In addition, our end-to-end evaluations show that REAPER enables significant system performance improvement and DRAM power reduction, outperforming the brute-force approach and enabling high-performance operation at longer refresh intervals that were previously unreasonable to employ due to the high associated profiling overhead. |
| Starting Page | 255 |
| Ending Page | 268 |
| Page Count | 14 |
| File Format | |
| ISBN | 9781450348928 |
| DOI | 10.1145/3079856.3080242 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-06-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Refresh Memory Dram Retention failures Reliability Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|