Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kozyrakis, Christos Sanchez, Daniel |
| Abstract | Architectural simulation is time-consuming, and the trend towards hundreds of cores is making sequential simulation even slower. Existing parallel simulation techniques either scale poorly due to excessive synchronization, or sacrifice accuracy by allowing event reordering and using simplistic contention models. As a result, most researchers use sequential simulators and model small-scale systems with 16-32 cores. With 100-core chips already available, developing simulators that scale to thousands of cores is crucial. We present three novel techniques that, together, make thousand-core simulation practical. First, we speed up detailed core models (including OOO cores) with instruction-driven timing models that leverage dynamic binary translation. Second, we introduce bound-weave, a two-phase parallelization technique that scales parallel simulation on multicore hosts efficiently with minimal loss of accuracy. Third, we implement lightweight user-level virtualization to support complex workloads, including multiprogrammed, client-server, and managed-runtime applications, without the need for full-system simulation, sidestepping the lack of scalable OSs and ISAs that support thousands of cores. We use these techniques to build zsim, a fast, scalable, and accurate simulator. On a 16-core host, zsim models a 1024-core chip at speeds of up to 1,500 MIPS using simple cores and up to 300 MIPS using detailed OOO cores, 2-3 orders of magnitude faster than existing parallel simulators. Simulator performance scales well with both the number of modeled cores and the number of host cores. We validate zsim against a real Westmere system on a wide variety of workloads, and find performance and microarchitectural events to be within a narrow range of the real system. |
| Starting Page | 475 |
| Ending Page | 486 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781450320795 |
| DOI | 10.1145/2485922.2485963 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-06-23 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|