Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kannan, Sudarsun Gavrilovska, Ada Schwan, Karsten |
| Abstract | Next-generation byte-addressable nonvolatile memories (NVMs), such as phase change memory (PCM) and Memristors, promise fast data storage, and more importantly, address DRAM scalability issues. State-of-the-art OS mechanisms for NVMs have focused on improving the block-based virtual file system (VFS) to manage both persistence and the memory capacity scaling needs of applications. However, using the VFS for capacity scaling has several limitations, such as the lack of automatic memory capacity scaling across DRAM and NVM, inefficient use of the processor cache and TLB, and high page access costs. These limitations reduce application performance and also impact applications that use NVM for persistent object storage with flat namespaces, such as photo stores, NoSQL databases, and others. To address such limitations, we propose persistent virtual memory (pVM), a system software abstraction that provides applications with (1) automatic OS-level memory capacity scaling, (2) flexible memory placement policies across NVM, and (3) fast object storage. pVM extends the OS virtual memory (VM) instead of building on the VFS and abstracts NVM as a NUMA node with support for NVM-based memory placement mechanisms. pVM inherits benefits from the cache and TLB-efficient VM subsystem and augments these further by distinguishing between persistent and nonpersistent capacity use of NVM. Additionally, pVM achieves fast persistent storage by further extending the VM subsystem with consistent and durable OS-level persistent metadata. Our evaluation of pVM with memory capacity-intensive applications shows a 2.5x speedup and up to 80% lower TLB and cache misses compared to VFS-based systems. pVM's object store provides 2x higher throughput compared to the block-based approach of the state-of-the art solution and up to a 4x reduction in the time spent in the OS. |
| Starting Page | 1 |
| Ending Page | 16 |
| Page Count | 16 |
| File Format | |
| ISBN | 9781450342407 |
| DOI | 10.1145/2901318.2901325 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-04-18 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|