Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Parthasarathy, Sailashri Rotenberg, Eric Reddy, Vimal K. |
| Abstract | Redundant threading architectures duplicate all instructions to detect and possibly recover from transient faults. Several lighter weight Partial Redundant Threading (PRT) architectures have been proposed recently. (i) Opportunistic Fault Tolerance duplicates instructions only during periods of poor single-thread performance. (ii) ReStore does not explicitly duplicate instructions and instead exploits mispredictions among highly confident branch predictions as symptoms of faults. (iii) Slipstream creates a reduced alternate thread by replacing many instructions with highly confident predictions. We explore PRT as a possible direction for achieving the fault tolerance of full duplication with the performance of single-thread execution. Opportunistic and ReStore yield partial coverage since they are restricted to using only partial duplication or only confident predictions, respectively. Previous analysis of Slipstream fault tolerance was cursory and concluded that only duplicated instructions are covered. In this paper, we attempt to better understand Slipstream's fault tolerance, conjecturing that the mixture of partial duplication and confident predictions actually closely approximates the coverage of full duplication. A thorough dissection of prediction scenarios confirms that faults in nearly 100% of instructions are detectable. Fewer than 0.1% of faulty instructions are not detectable due to coincident faults and mispredictions. Next we show that the current recovery implementation fails to leverage excellent detection capability, since recovery sometimes initiates belatedly, after already retiring a detected faulty instruction. We propose and evaluate a suite of simple microarchitectural alterations to recovery and checking. Using the best alterations, Slipstream can recover from faults in 99% of instructions, compared to only 78% of instructions without alterations. Both results are much higher than predicted by past research, which claims coverage for only duplicated instructions, or 65% of instructions. On an 8-issue SMT processor, Slipstream performs within 1.3% of single-thread execution whereas full duplication slows performance by 14%.A key byproduct of this paper is a novel analysis framework in which every dynamic instruction is considered to be hypothetically faulty, thus not requiring explicit fault injection. Fault coverage is measured in terms of the fraction of candidate faulty instructions that are directly or indirectly detectable before. |
| Starting Page | 83 |
| Ending Page | 94 |
| Page Count | 12 |
| File Format | |
| ISBN | 1595934510 |
| DOI | 10.1145/1168857.1168869 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2006-10-23 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Time redundancy Value prediction Chip multiprocessor (cmp) Slipstream processor Transient faults Branch prediction Simultaneous multithreading (smt) Redundant multithreading |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|