Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kaltofen, Erich |
| Abstract | The problem of factoring a polynomial in a single or severalvariables over a finite field, the rational numbers or the complexnumbers is one of the success stories in the discipline of symboliccomputation. In the early 1960s implementors investigated theconstructive methods known from classical algebra books, but--withthe exception of Gauss's distinct degree factorizationalgorithm--found the algorithms quite inefficient in practice [16].The contributions in algorithmic techniques that have been madeover the next 40 years are truly a hallmark of symbolic computationresearch.The early pioneers, Berlekamp, Musser, Wang, Weinberger,Zassenhaus and others applied new ideas like randomization, thateven before the now famous algorithms for primality testing byRabin and Strassen, and like generic programming with coefficientdomains as abstract data classes, and they introduced the powerfulHensel lifting lemma to computer algebra. We note that whilede-randomization for integer primality testing has beenaccomplished recently [1], the same remains open for the problem ofcomputing a root of a polynomial modulo a large prime [12, ResearchProblem 14.48].Polynomial-time complexity for rational coefficients wasestablished in the early 1980s by the now-famous lattice basisreduction algorithm of A. Lenstra, H. W. Lenstra, Jr., and L.Lovász. The case of many variables first became anapplication of the DeMillo and Lipton/Schwartz/Zippel lemma [30]and then triggered a fundamental generalization from the standardsparse (distributed) representation of polynomials to the one bystraight line and black box programs [11, 17, 19]. Effectiveversions of the Hilbert irreducibility theorem are needed for theprobabilistic analysis, which serendipitously later have alsoplayed a role in the PCP characterization of NP[2]. Unlike many other problems in commutative algebra andalgebraic geometry, such as algebraic system solving, thepolynomial factoring problem is of probabilistic polynomial-timecomplexity in the number of variables.Complex coefficients in multivariate factors can be representedeither by exact algebraic numbers or by imprecise floating pointnumbers. The latter formulation is a cornerstone in the newcomputer algebra subject of SNAP (Symbolic-Numeric Algorthms forPolynomials) (see, e.g., [4]). The approaches for both exact andimprecise coefficients are manifold, including Ruppert's partialdifferential equations [26, 27, 6, 10] and Gao's and Lauder'sfar-reaching generalization of Eisenstein's criterion in themultivariate case to Newton polytope decomposition [8, 9]. Thecurrently best algorithms were all discovered recently within thepast ten years.The baby steps/giant steps technique and fast distinct and equaldegree factorization implementations have, at last, yielded in themid 1990s theoretical and practical improvements over the originalunivariate Berlekamp algorithm for coefficients in finite fields[13, 29, 18, 3]. The average time analysis for selected algorithmsis also completed [5]. For bivariate polynomials over finitefields, surprisingly Gröbner basis techniques are useful inpractice [23].New polynomial-time complexity results are the computation oflow degree factors of very high degree sparse (lacunary)polynomials by H. W. Lenstra, Jr. [20, 21], and the deterministicdistinct degree factorization for multivariate polynomials overlarge finite fields [7]. However, many problems with high degreepolynomials over large finite fields in sparse or straight lineprogram representations, such as computing a root modulo a largeprime, are not known to be in random polynomial time or NP-hard(cf. [24, 25, 15]).Finally, in 2000 Mark van Hoeij [14] reintroduced lattice basisreduction, now in the Berlekamp-Zassenhaus algorithm, to conquerthe hard-to-factor Swinnerton-Dyer polynomials in practice. Sasakiin 1993 had already hinted of the used approach [28].In my talk I will discuss a selection of the highlights, stateremaining open problems, and give some applications including anunusual one due to Moni Naor [22]. |
| Starting Page | 3 |
| Ending Page | 4 |
| Page Count | 2 |
| File Format | |
| ISBN | 1581136412 |
| DOI | 10.1145/860854.860857 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2003-08-03 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Black box polynomial Lattice basis reduction Polynomial factorization Straight line program Symbolic/numeric hybrid method Randomized algorithm |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|