Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Chen, Chao Ziabari, Amir Kavyan Kavyan Joshi, Ajay Ubal, Rafael Kaeli, David Abellán, Jose L. |
| Abstract | Silicon-photonic link technology promises to satisfy the growing need for high bandwidth, low-latency and energy-efficient network-on-chip (NoC) architectures. While silicon-photonic NoC designs have been extensively studied for future many-core systems, their use in massively-threaded GPUs has received little attention to date. In this paper, we first analyze an electrical NoC which connects different cache levels (L1 to L2) in a contemporary GPU memory hierarchy. Evaluating workloads from the AMD SDK run on the Multi2sim GPU simulator finds that, apart from limits in memory bandwidth, an electrical NoC can significantly hamper performance and impede scalability, especially as the number of compute units grows in future GPU systems. To address this issue, we advocate using silicon-photonic link technology for on-chip communication in GPUs, and we present the first GPU-specific analysis of a cost-effective hybrid photonic crossbar NoC. Our baseline is based on an AMD Southern Islands GPU with 32 compute units (CUs) and we compare this design to our proposed hybrid silicon-photonic NoC. Our proposed photonic hybrid NoC increases performance by up to 6 x (2.7 x on average) and reduces the $energy-delay^{2}$ product $(ED^{2}P)$ by up to 99% (79% on average) as compared to conventional electrical crossbars. For future GPU systems, we study an electrical 2D-mesh topology since it scales better than an electrical crossbar. For a 128-CU GPU, the proposed hybrid silicon-photonic NoC can improve performance by up to 1.9 x (43% on average) and achieve up to 62% reduction in $ED^{2}P$ (3% on average) in comparison to mesh design with best performance. |
| Starting Page | 273 |
| Ending Page | 282 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450335591 |
| DOI | 10.1145/2751205.2751229 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-06-08 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Gpus Photonics technology Network-on-chip |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|