Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Korman, Amos Masuzawa, Toshimitsu Kutten, Shay |
| Abstract | This paper demonstrates the usefulness of distributed local verification of proofs, as a tool for the design of algorithms. In particular, it introduces a somewhat generalized notion of distributed local proofs, and utilizes it for improving the memory size complexity, while obtaining time efficiency too. As a result, we show that optimizing the memory size carries at most a small cost in terms of time, in the context of Minimum Spanning Tree (MST). That is, we present algorithms that are both time and space efficient for constructing an MST, for verifying it, and for detecting the location of the faults. This involves several steps that may be considered contributions in themselves. First, we generalize the notion of local proofs, trading off the locality (or, really, the time complexity) for memory efficiency. This adds a dimension to the study of distributed local proofs, that has been gaining attention recently. Second, as opposed to previous studies that presented only the labels verification part of a proof labeling schemes, we present here also a space and time efficient distributed self stabilizing marker algorithm to generates those labels. This presents proof labeling schemes as an algorithmic tool. Finally, we show how to enhance a known transformer that makes input/output algorithms self stabilizing. It now takes as input an efficient construction algorithm and an efficient self stabilizing proof labeling scheme, and produces an efficient self stabilizing algorithm. When used for MST, the transformer produces a memory optimal (i.e., O(log n) bits per node) self stabilizing algorithm, whose time complexity, namely, O(n), is significantly better even than that of previous algorithms that where not space optimal. (The time complexity of previous MST algorithms that used $©(log^{2}$ n) memory bits per node was $O(n^{2}),$ and the time for optimal space algorithms was O(n|E|).) Our MST algorithm also has the important property that, if faults occur after the construction ended, then they are detected by some nodes within $O(log^{2}$ n) time in synchronous networks, or within O(? $log^{2}$ n) time in asynchronous ones. This property is inherited from the specific proof labeling scheme we construct. It answers an open problem posed by Awerbuch and Varghese (FOCS 1991). We also show that ©(log n) time is necessary if the memory size is restricted to O(log n) bits, even in synchronous networks. Another property is that if f faults occurred, then, within the required detection time above, they are detected by some node in the O(f log n) locality of each of the faults. We also show how to improve the above detection time and locality, at the expense of some increase in the memory. |
| Starting Page | 311 |
| Ending Page | 320 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450307192 |
| DOI | 10.1145/1993806.1993866 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-06-06 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Self stabilization Fault detection Locality Local proof checking Distributed algorithms Distributed verification Mst |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|