Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Schneider, Florian T. Adl-Tabatabai, Ali-Reza Shpeisman, Tatiana Menon, Vijay |
| Abstract | Transactional memory (TM) is a promising concurrency control alternative to locks. Recent work has highlighted important memory model issues regarding TM semantics and exposed problems in existing TM implementations. For safe, managed languages such as Java, there is a growing consensus towards strong atomicity semantics as a sound, scalable solution. Strong atomicity has presented a challenge to implement efficiently because it requires instrumentation of non-transactional memory accesses, incurring significant overhead even when a program makes minimal or no use of transactions. To minimize overhead, existing solutions require either a sophisticated type system, specialized hardware, or static whole-program analysis. These techniques do not translate easily into a production setting on existing hardware. In this paper, we present novel dynamic optimizations that significantly reduce strong atomicity overheads and make strong atomicity practical for dynamic language environments. We introduce analyses that optimistically track which non-transactional memory accesses can avoid strong atomicity instrumentation, and we describe a lightweight speculation and recovery mechanism that applies these analyses to generate speculatively-optimized but safe code for strong atomicity in a dynamically-loaded environment. We show how to implement these mechanisms efficiently by leveraging existing dynamic optimization infrastructure in a Java system. Measurements on a set of transactional and non-transactional Java workloads demonstrate that our techniques substantially reduce the overhead of strong atomicity from a factor of 5x down to 10% or less over an efficient weak atomicity baseline. |
| Starting Page | 181 |
| Ending Page | 194 |
| Page Count | 14 |
| File Format | |
| ISBN | 9781605582153 |
| DOI | 10.1145/1449764.1449779 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2008-10-19 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Code generation Dynamic optimizations Strong atomicity Virtual machines Compiler optimizations Transactional memory |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|