Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Sami, Rahul Henry, Dana S. Kuszmaul, Bradley C. Loh, Gabriel H. |
| Abstract | Our program benchmarks and simulations of novel circuits indicate that large-window processors are feasible. Using our redesigned superscalar components, a large-window processor implemented in today's technology can achieve an increase of 10-60% (geometric mean of 31%) in program speed compared to today's processors. The processor operates at clock speeds comparable to today's processors, but achieves significantly higher ILP.To measure the impact of a large window on clock speed, we design and simulate new implementations of the logic components that most limit the critical path of our large-window processor: the schedule logic and the wake-up logic. We use log-depth cyclic segmented prefix (CSP) circuits to reimplement these components. Our layouts and simulations of critical paths through these circuits indicate that our large-window processor could be clocked at frequencies exceeding 500MHz in today's technology. Our commit logic and rename logic can also run at these speeds.To measure the impact of a large window on ILP, we compare two microarchitectures, the first has a 128-instruction window, an 8-wide fetch unit, and 20-wide issue (four integer, branch, multiply, float, and memory units), whereas the second has a 32-instruction window, and a 4-wide fetch unit and is comparable to today's processors. For each, we simulate different window reuse and bypass policies. Our simulations show that the large-window processor achieves significantly higher IPC. This performance increase comes despite the fact that the large-window processor uses a wrap-around window while the small-window processor uses a compressing window, thus effectively increasing its number of outstanding instructions. Furthermore, the large-window processor sometimes pays an extra clock cycle for bypassing. |
| Starting Page | 236 |
| Ending Page | 247 |
| Page Count | 12 |
| File Format | |
| ISBN | 1581132328 |
| DOI | 10.1145/339647.339689 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2000-06-10 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|