Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Khardon, Roni Preston, Dan R. Brodley, Carla E. Friedl, Mark Sulla-Menashe, Damien |
| Abstract | Two aspects are crucial when constructing any real world supervised classification task: the set of classes whose distinction might be useful for the domain expert, and the set of classifications that can actually be distinguished by the data. Often a set of labels is defined with some initial intuition but these are not the best match for the task. For example, labels have been assigned for land cover classification of the Earth but it has been suspected that these labels are not ideal and some classes may be best split into subclasses whereas others should be merged. This paper formalizes this problem using three ingredients: the existing class labels, the underlying separability in the data, and a special type of input from the domain expert. We require a domain expert to specify an L × L matrix of pairwise probabilistic constraints expressing their beliefs as to whether the L classes should be kept separate, merged, or split. This type of input is intuitive and easy for experts to supply. We then show that the problem can be solved by casting it as an instance of penalized probabilistic clustering (PPC). Our method, Class-Level PPC (CPPC) extends PPC showing how its time complexity can be reduced from $O(N^{2})$ to O(NL) for the problem of class re-definition. We further extend the algorithm by presenting a heuristic to measure adherence to constraints, and providing a criterion for determining the model complexity (number of classes) for constraint-based clustering. We demonstrate and evaluate CPPC on artificial data and on our motivating domain of land cover classification. For the latter, an evaluation by domain experts shows that the algorithm discovers novel class definitions that are better suited to land cover classification than the original set of labels. |
| Starting Page | 823 |
| Ending Page | 832 |
| Page Count | 10 |
| File Format | PDF QT / MOV |
| ISBN | 9781450300551 |
| DOI | 10.1145/1835804.1835908 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-07-25 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Kdd-process Mining scientific data Class discovery Remote sensing Constraint-based clustering |
| Content Type | Video Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|