Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Cooprider, Nathan Regehr, John Yang, Xuejun |
| Abstract | Most programming languages support a call stack in the programming model and also in the runtime system.We show that for applications targeting low-power embedded microcontrollers (MCUs), RAM usage can be significantly decreased by partially or completely eliminating the runtime callstack. We present flattening, a transformation that absorbs a function into its caller, replacing function invocations and returns with jumps. Unlike inlining, flattening does not duplicate the bodies of functions that have multiple callsites. Applied aggressively, flattening results in stack elimination. Flattening is most useful in conjunction with a lifting transformation that moves global variables into a local scope. Flattening and lifting can save RAM. However, even more benefit can be obtained by adapting the compiler to cope with properties of flattened code. First, we show that flattening adds false paths that confuse a standard live variables analysis. The resulting problems can be mitigated by breaking spurious live-range conflicts between variables using information from the unflattened callgraph. Second, we show that the impact of high register pressure due to flattened and lifted code, and consequent spills out of the register allocator, can be mitigated by improving a compiler's stack layout optimizations. We have implemented both of these improvements in GCC, and have implemented flattening and lifting as source-to-source transformations. On a collection of applications for the AVR family of 8-bit MCUs, we show that total RAM usage can be reduced by 20% by compiling flattened and lifted programs with our improved GCC. |
| Starting Page | 60 |
| Ending Page | 69 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781605583563 |
| DOI | 10.1145/1542452.1542461 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-06-19 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Memory optimizations Compiler optimization Sensor networks Memory allocation Embedded software Stack liveness |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|