Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Wang, Suhang Liu, Huan Aggarwal, Charu |
| Abstract | Feature engineering has found increasing interest in recent years because of its ability to improve the effectiveness of various machine learning models. Although tailored feature engineering methods have been designed for various domains, there are few that simulate the consistent effectiveness of kernel methods. At the core, the success of kernel methods is achieved by using similarity functions that emphasize local variations in similarity. Unfortunately, this ability comes at the price of the high level of computational resources required and the inflexibility of the representation as it only provides the similarity of two data points instead of vector representations of each data point; while the vector representations can be readily used as input to facilitate various models for different tasks. Furthermore, kernel methods are also highly susceptible to overfitting and noise and it cannot capture the variety of data locality. In this paper, we first analyze the inner working and weaknesses of kernel method, which serves as guidance for designing feature engineering. With the guidance, we explore the use of randomized methods for feature engineering by capturing multi-granular locality of data. This approach has the merit of being time and space efficient for feature construction. Furthermore, the approach is resistant to overfitting and noise because the randomized approach naturally enables fast and robust ensemble methods. Extensive experiments on a number of real world datasets are conducted to show the effectiveness of the approach for various tasks such as clustering, classification and outlier detection. |
| Starting Page | 485 |
| Ending Page | 494 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450348874 |
| DOI | 10.1145/3097983.3098001 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-08-13 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Unsupervised feature learning Randomized feature engineering |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|