Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | ACM Digital Library |
---|---|
Author | Kuang, Kun Cui, Peng Jiang, Meng Li, Bo Yang, Shiqiang |
Abstract | Estimating treatment effect plays an important role on decision making in many fields, such as social marketing, healthcare, and public policy. The key challenge on estimating treatment effect in the wild observational studies is to handle confounding bias induced by imbalance of the confounder distributions between treated and control units. Traditional methods remove confounding bias by re-weighting units with supposedly accurate propensity score estimation under the unconfoundedness assumption. Controlling high-dimensional variables may make the unconfoundedness assumption more plausible, but poses new challenge on accurate propensity score estimation. One strand of recent literature seeks to directly optimize weights to balance confounder distributions, bypassing propensity score estimation. But existing balancing methods fail to do selection and differentiation among the pool of a large number of potential confounders, leading to possible underperformance in many high dimensional settings. In this paper, we propose a data-driven Differentiated Confounder Balancing (DCB) algorithm to jointly select confounders, differentiate weights of confounders and balance confounder distributions for treatment effect estimation in the wild high dimensional settings. The synergistic learning algorithm we proposed is more capable of reducing the confounding bias in many observational studies. To validate the effectiveness of our DCB algorithm, we conduct extensive experiments on both synthetic and real datasets. The experimental results clearly demonstrate that our DCB algorithm outperforms the state-of-the-art methods. We further show that the top features ranked by our algorithm generate accurate prediction of online advertising effect. |
Starting Page | 265 |
Ending Page | 274 |
Page Count | 10 |
File Format | |
ISBN | 9781450348874 |
DOI | 10.1145/3097983.3098032 |
Language | English |
Publisher | Association for Computing Machinery (ACM) |
Publisher Date | 2017-08-13 |
Publisher Place | New York |
Access Restriction | Subscribed |
Subject Keyword | Causal inference High dimensional inference Treatment effect estimation |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|