Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Jagodzinski, Filip Streinu, Ileana |
| Abstract | Proteins are dynamic molecules, and understanding how they flex and bend provides fundamental insights to their functions. Methods such as molecular dynamics are computationally expensive, and can simulate protein motions on limited timescales. Rigidity analysis is an alternative method, in which a protein structure is analyzed to infer which portions of the molecule are flexible. To perform rigidity analysis, a model is first constructed in which various inter-atomic stabilizing interactions are modeled according to their strength. No detailed study has been conducted as to what is the most plausible, chemically validated modeling scheme. All previous implementations have relied on heuristics, which allowed for extracting relevant observations but only for a very limited set of proteins. We used our recently released KINARI-Web server for protein rigidity analysis to systematically vary how stabilizing interactions are modeled. Computational experiments that vary how hydrogen bonds and hydrophobic interactions are modeled to test which of them gives rigidity results that best correlate with experimental data has not been performed until this study. We collected a dataset of 159 Protein Data Bank files representing the wild-type and 158 variants of Lysozyme from bacteriophage T4, for which we retrieved experimentally derived stability data from the literature. We present here a systematic study seeking a possible correlation between some rigidity parameters and this experimental data. In particular, we compare rigidity results obtained from several methods for modeling interatomic interactions. |
| Starting Page | 408 |
| Ending Page | 413 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781450316705 |
| DOI | 10.1145/2382936.2382988 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2012-10-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Biological validation Rigidity analysis Protein modeling |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|