Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Nakamura, Satoshi Toda, Tomoki Takamichi, Shinnosuke Neubig, Graham Black, Alan W. Sakti, Sakriani |
| Copyright Year | 2016 |
| Abstract | This paper presents novel approaches based on modulation spectrum (MS) for high-quality statistical parametric speech synthesis, including text-to-speech (TTS) and voice conversion (VC). Although statistical parametric speech synthesis offers various advantages over concatenative speech synthesis, the synthetic speech quality is still not as good as that of con-catenative speech synthesis or the quality of natural speech. One of the biggest issues causing the quality degradation is the over-smoothing effect often observed in the generated speech parameter trajectories. Global variance (GV) is known as a feature well correlated with the over-smoothing effect, and the effectiveness of keeping the GV of the generated speech parameter trajectories similar to those of natural speech has been confirmed. However, the quality gap between natural speech and synthetic speech is still large. In this paper, we propose using the MS of the generated speech parameter trajectories as a new feature to effectively quantify the over-smoothing effect. Moreover, we propose post-filters to modify the MS utterance by utterance or segment by segment to make the MS of synthetic speech close to that of natural speech. The proposed postfilters are applicable to various synthesizers based on statistical parametric speech synthesis. We first perform an evaluation of the proposed method in the framework of hidden Markov model (HMM)-based TTS, examining its properties from different perspectives. Furthermore, effectiveness of the proposed postfilters are also evaluated in Gaussian mixture model (GMM)-based VC and classification and regression trees (CART)-based TTS (a.k.a., CLUSTERGEN). The experimental results demonstrate that 1) the proposed utterance-level postfilter achieves quality comparable to the conventional generation algorithm considering the GV, and yields significant improvements by applying to the GV-based generation algorithm in HMM-based TTS, 2) the proposed segment-level postfilter capable of achieving low-delay synthesis also yields significant improvements in synthetic speech quality, and 3) the proposed postfilters are also effective in not only HMM-based TTS but also GMM-based VC and CLUSTERGEN. |
| Starting Page | 755 |
| Ending Page | 767 |
| Page Count | 13 |
| File Format | |
| ISSN | 23299290 |
| e-ISSN | 23299304 |
| Volume Number | 24 |
| Issue Number | 4 |
| Journal | IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-04-01 |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | CLUSTERGEN GMM-based voice conversion HMM-based text-to-speech Global variance Modulation spectrum Over-smoothing Post-filter Statistical parametric speech synthesis |
| Content Type | Text |
| Resource Type | Article |
| Subject | Instrumentation Computational Mathematics Signal Processing Electrical and Electronic Engineering Acoustics and Ultrasonics Speech and Hearing Media Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|