Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Chen, Xiangyu Yan, Shuicheng Cheng, Bin Dong, Jian Chua, Tat-Seng Zhou, Xi |
| Copyright Year | 2013 |
| Abstract | Graph-based semi-supervised image annotation has achieved great success in a variety of studies, yet it essentially and intuitively suffers from both the irrelevant/noisy features (referred to as feature outliers) and the unusual/corrupted samples (referred to as sample outliers). In this work, we investigate how to derive robust sample affinity matrix via simultaneous feature and sample outlier pursuit. This task is formulated as a Dual-outlier and Prior-driven Low-Rank Representation (DP-LRR) problem, which possesses convexity in objective function. In DP-LRR, the clean data are assumed to be self-reconstructible with low-rank coefficient matrix as in LRR; while the error matrix is decomposed as the sum of a row-wise sparse matrix and a column-wise sparse matrix, the $ℓ_{2,1}-norm$ minimization of which encourages the pursuit of feature and sample outliers respectively. The DP-LRR is further regularized by the priors from side information, that is, the inhomogeneous data pairs. An efficient iterative procedure based on linearized alternating direction method is presented to solve the DP-LRR problem, with closed-form solutions within each iteration. The derived low-rank reconstruction coefficient matrix is then fed into any graph based semi-supervised label propagation algorithm for image annotation, and as a by-product, the cleaned data from DP-LRR can also be utilized as a better image representation to generally boost image annotation performance. Extensive experiments on MIRFlickr, Corel30K, NUS-WIDE-LITE and NUS-WIDE databases well demonstrate the effectiveness of the proposed formulation for robust image annotation. |
| Starting Page | 1 |
| Ending Page | 20 |
| Page Count | 20 |
| File Format | |
| ISSN | 15516857 |
| e-ISSN | 15516865 |
| DOI | 10.1145/2501643.2501646 |
| Volume Number | 9 |
| Issue Number | 4 |
| Journal | ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-08-19 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Low-Rank Representation Sample and feature outlier removal |
| Content Type | Text |
| Resource Type | Article |
| Subject | Hardware and Architecture Computer Networks and Communications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|