Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Natarajan, Ragavendra Zhai, Antonia |
| Copyright Year | 2015 |
| Abstract | System emulation is widely used in today’s computer systems. This technology opens new opportunities for resource sharing as well as enhancing system security and reliability. System emulation across different instruction set architectures (ISA) can enable further opportunities. For example, cross-ISA emulation can enable workload consolidation over a wide range of microprocessors and potentially facilitate the seamless deployment of new processor architectures. As multicore and manycore processors become pervasive, it is important to address the challenges toward supporting system emulation on these platforms. A key challenge in cross-ISA emulation on multicore systems is ensuring the correctness of emulation when the guest and the host memory consistency models differ. Many existing cross-ISA system emulators are sequential, thus they are able to avoid this problem at the cost of significant performance degradation. Recently proposed parallel emulators are able to address the performance limitation; however, they provide limited support for memory consistency model emulation. When the host system has a weaker memory consistency model compared to the guest system, the emulator can insert memory fences at appropriate locations in the translated code to enforce the guest memory ordering constraints. These memory fences can significantly degrade the performance of the translated code. Transactional execution support available on certain recent microprocessors provides an alternative approach. Transactional execution of the translated code enforces sequential consistency (SC) at the coarse-grained transaction level, which in turn ensures that all memory accesses made on the host machine conform to SC. Enforcing SC on the host machine guarantees that the emulated execution will be correct for any guest memory model. In this article, we compare and evaluate the overheads associated with using transactions and fences for memory consistency model emulation on the Intel Haswell processor. Our experience of implementing these two approaches on a state-of-the-art parallel emulator, COREMU, demonstrates that memory consistency model emulation using transactions performs better when the transaction sizes are large enough to amortize the transaction overhead and the transaction conflict rate is low, whereas inserting memory fences is better for applications in which the transaction overhead is high. A hybrid implementation that dynamically determines which approach to invoke can outperform both approaches. Our results, based on the SPLASH-2 and the PARSEC benchmark suites, demonstrate that the proposed hybrid approach is able to outperform the fence insertion mechanism by 4.9% and the transactional execution approach by 24.9% for two-thread applications, and outperform them by 4.5% and 44.7%, respectively, for four-threaded execution. |
| Starting Page | 1 |
| Ending Page | 24 |
| Page Count | 24 |
| File Format | |
| ISSN | 15443566 |
| e-ISSN | 15443973 |
| DOI | 10.1145/2786980 |
| Volume Number | 12 |
| Issue Number | 3 |
| Journal | ACM Transactions on Architecture and Code Optimization (TACO) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-08-31 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Parallel emulators Memory consistency models Transactional memory |
| Content Type | Text |
| Resource Type | Article |
| Subject | Hardware and Architecture Information Systems Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|