Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Casarona, Jeff Zhao, Minshu Yeung, Donald Badamo, Michael |
| Copyright Year | 2016 |
| Abstract | To enable performance improvements in a power-efficient manner, computer architects have been building CPUs that exploit greater amounts of thread-level parallelism. A key consideration in such CPUs is properly designing the on-chip cache hierarchy. Unfortunately, this can be hard to do, especially for CPUs with high core counts and large amounts of cache. The enormous design space formed by the combinatorial number of ways in which to organize the cache hierarchy makes it difficult to identify power-efficient configurations. Moreover, the problem is exacerbated by the slow speed of architectural simulation, which is the primary means for conducting such design space studies. A powerful tool that can help architects optimize CPU cache hierarchies is reuse distance (RD) analysis. Recent work has extended uniprocessor RD techniques-i.e., by introducing concurrent RD and private-stack RD profiling—to enable analysis of different types of caches in multicore CPUs. Once acquired, parallel locality profiles can predict the performance of numerous cache configurations, permitting highly efficient design space exploration. To date, existing work on multicore RD analysis has focused on developing the profiling techniques and assessing their accuracy. Unfortunately, there has been no work on using RD analysis to optimize CPU performance or power consumption. This article investigates applying multicore RD analysis to identify the most power efficient cache configurations for a multicore CPU. First, we develop analytical models that use the cache-miss counts from parallel locality profiles to estimate CPU performance and power consumption. Although future scalable CPUs will likely employ multithreaded (and even out-of-order) cores, our current study assumes single-threaded in-order cores to simplify the models, allowing us to focus on the cache hierarchy and our RD-based techniques. Second, to demonstrate the utility of our techniques, we apply our models to optimize a large-scale tiled CPU architecture with a two-level cache hierarchy. We show that the most power efficient configuration varies considerably across different benchmarks, and that our locality profiles provide deep insights into why certain configurations are power efficient. We also show that picking the best configuration can provide significant gains, as there is a 2.01x power efficiency spread across our tiled CPU design space. Finally, we validate the accuracy of our techniques using detailed simulation. Among several simulated configurations, our techniques can usually pick the most power efficient configuration, or one that is very close to the best. In addition, across all simulated configurations, we can predict power efficiency with 15.2% error. |
| Starting Page | 1 |
| Ending Page | 30 |
| Page Count | 30 |
| File Format | |
| ISSN | 07342071 |
| e-ISSN | 15577333 |
| DOI | 10.1145/2851503 |
| Volume Number | 34 |
| Issue Number | 1 |
| Journal | ACM Transactions on Computer Systems (TOCS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-04-06 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Cache performance Chip multiprocessors Design space exploration Reuse distance |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|