Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Dioumaev, Andrei K. Lanyi, Janos K. Wang, Jennifer M. |
| Description | Author Affiliation: Dioumaev AK ( Department of Physiology & Biophysics, University of California, Irvine, California 92697, USA. 5R37GM029498),) |
| Abstract | Low-temperature FTIR spectroscopy of bacteriorhodopsin and xanthorhodopsin was used to elucidate the number of K-like bathochromic states, their sequence, and their contributions to the photoequilibrium mixtures created by illumination at 80-180 K. We conclude that in bacteriorhodopsin the photocycle includes three distinct K-like states in the sequence bR (hv)--> I* --> J --> K(0) --> K(E) --> L --> ..., and similarly in xanthorhodopsin. K(0) is the main fraction in the mixture at 77 K that is formed from J. K(0) becomes thermally unstable above approximately 50 K in both proteins. At 77 K, both J-to-K(0) and K(0)-to-K(E) transitions occur and, contrarily to long-standing belief, cryogenic trapping at 77 K does not produce a pure K state but a mixture of the two states, K(0) and K(E), with contributions from K(E) of approximately 15 and approximately 10% in the two retinal proteins, respectively. Raising the temperature leads to increasing conversion of K(0) to K(E), and the two states coexist (without contamination from non-K-like states) in the 80-140 K range in bacteriorhodopsin, and in the 80-190 K range in xanthorhodopsin. Temperature perturbation experiments in these regions of coexistence revealed that, in spite of the observation of apparently stable mixtures of K(0) and K(E), the two states are not in thermally controlled equilibrium. The K(0)-to-K(E) transition is unidirectional, and the partial transformation to K(E) is due to distributed kinetics, which governs the photocycle dynamics at temperatures below approximately 245 K (Dioumaev and Lanyi, Biochemistry 2008, 47, 11125-11133). From spectral deconvolution, we conclude that the K(E) state, which is increasingly present at higher temperatures, is the same intermediate that is detected by time-resolved FTIR prior to its decay, on a time scale of hundreds of nanoseconds at ambient temperature (Dioumaev and Braiman, J. Phys. Chem. B 1997, 101, 1655-1662), into the K(L) state. We were unable to trap the latter separately from K(E) at low temperature, due to the slow distributed kinetics and the increasingly faster overlapping formation of the L state. Formation of the two consecutive K-like states in both proteins is accompanied by distortion of two different weakly bound water molecules: one in K(0), the other in K(E). The first, well-documented in bacteriorhodopsin at 77 K where K(0) dominates, was assigned to water 401 in bacteriorhodopsin. The other water molecule, whose participation has not been described previously, is disturbed on the next step of the photocycle, in K(E), in both proteins. In bacteriorhodopsin, the most likely candidate is water 407. However, unlike bacteriorhodopsin, the crystal structure of xanthorhodopsin lacks homologous weakly bound water molecules. |
| ISSN | 15206106 |
| e-ISSN | 15205207 |
| Journal | The Journal of Physical Chemistry B |
| Issue Number | 8 |
| Volume Number | 114 |
| Language | English |
| Publisher | American Chemical Society (United States) |
| Publisher Date | 2010-03-04 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Bacterial Proteins Chemistry Bacteriorhodopsins Rhodopsins, Microbial Temperature Photochemistry Spectroscopy, Fourier Transform Infrared Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Physical chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Surfaces, Coatings and Films Materials Chemistry Medicine Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|