Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Li, Pei Zhou, Yunyun Ren, Wangyu Zhang, Jingfei Xu, Lin Sun, Dongmei Wu, Ping Zhou, Yiming Tang, Yawen |
| Description | Author Affiliation: Zhang J ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.); Ren W ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.); Zhou Y ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.); Li P ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.); Xu L ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.); Sun D ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China. sundongmei@njnu.edu.cn.); Wu P ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.); Zhou Y ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.); Tang Y ( Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P.R. China.) |
| Abstract | Considerable lithium-driven volume changes and loss of crystallinity on cycling have impeded the sustainable use of transition metal oxides (MOs) as attractive anode materials for advanced lithium-ion batteries that have almost six times the capacity of carbon per unit volume. Herein, $Co_{3}O_{4}$ was used as a model MO in a facile process involving two pyrolysis steps for in situ encapsulation of nanosized MO in porous two-dimensional graphitic carbon nanosheets (2D-GCNs) with high surface areas and abundant active sites to overcome the above-mentioned problems. The proposed method is inexpensive, industrially scalable, and easy to operate with a high yield. TEM revealed that the encaged $Co_{3}O_{4}$ is well separated and uniformly dispersed with surrounding onionlike graphitic layers. By taking advantage of the high electronic conductivity and confinement effect of the surrounding 2D-GCNs, a hierarchical GCNs-coated $Co_{3}O_{4}$ $(Co_{3}O_{4}@GCNs)$ anode with 43.5 wt % entrapped active nanoparticles delivered a remarkable initial specific capacity of $1816 mAh g^{−1}$ at a current density of $100 mA g^{−1}.$ After 50 cycles, the retained capacity is as high as $987 mAh g^{−1}.$ When the current density was increased to $1000 mA g^{−1},$ the anode showed a capacity retention of $416 mAh g^{−1}.$ Enhanced reversible rate capability and prolonged cycling stability were found for $Co_{3}O_{4}@GCN$ compared to pure GCNs and $Co_{3}O_{4}.$ The $Co_{3}O_{4}@GCNs$ hybrid holds promise as an efficient candidate material for anodes due to its low cost, environmentally friendly nature, high capacity, and stability. |
| ISSN | 09476539 |
| e-ISSN | 15213765 |
| Journal | Chemistry - A European Journal |
| Issue Number | 28 |
| Volume Number | 22 |
| Language | English |
| Publisher | Wiley-VCH;ChemPubSoc Europe |
| Publisher Date | 2016-07-04 |
| Publisher Place | Germany |
| Access Restriction | Open |
| Subject Keyword | Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Organic Chemistry Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|