Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Caparrós, Cristina Ortiz-Hernandez, Mónica Molmeneu, Meritxell Punset, Miguel Calero, José Antonio Aparicio, Conrado Fernández-Fairén, Mariano Perez, Román Gil, Francisco Javier |
| Description | Country affiliation: Spain Author Affiliation: Caparrós C ( Biomaterials, Biomecànica i Enginyeria de Teixits Department, de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB, Technical University of Catalonia, Barcelona, Spain.); Ortiz-Hernandez M ( Nanoengineering Research Center (CRnE), Technical University of Catalonia, Catalonia, Spain.); Molmeneu M ( Biomaterials, Biomecànica i Enginyeria de Teixits Department, de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB, Technical University of Catalonia, Barcelona, Spain.); Punset M ( Nanoengineering Research Center (CRnE), Technical University of Catalonia, Catalonia, Spain.); Calero JA ( Biomaterials, Biomecànica i Enginyeria de Teixits Department, de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB, Technical University of Catalonia, Barcelona, Spain.); Aparicio C ( Nanoengineering Research Center (CRnE), Technical University of Catalonia, Catalonia, Spain.); Fernández-Fairén M ( Biomaterials, Biomecànica i Enginyeria de Teixits Department, de Ciència dels Materials i Enginyeria Metal·lúrgica, ETSEIB, Technical University of Catalonia, Barcelona, Spain.); Perez R ( Nanoengineering Research Center (CRnE), Technical University of Catalonia, Catalonia, Spain.); Gil FJ ( AMES S.A. Carretera Nacional 340, Pol.Ind. Les Fallulles. S. Vicenç dels Horts, Barcelona, Spain.) |
| Abstract | Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 µm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium. |
| File Format | HTM / HTML |
| ISSN | 09574530 |
| Issue Number | 10 |
| Journal | Journal of Materials Science: Materials in Medicine |
| Volume Number | 27 |
| e-ISSN | 15734838 |
| Language | English |
| Publisher | Springer |
| Publisher Date | 2016-10-01 |
| Publisher Place | United States |
| Access Restriction | Subscribed |
| Subject Keyword | Discipline Biomedical Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biomaterials Biophysics Bioengineering Biomedical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|