Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Castro, Victor M. Minnier, Jessica Murphy, Shawn N. Kohane, Isaac Churchill, Susanne E. Gainer, Vivian Cai, Tianxi Hoffnagle, Alison G. Dai, Yael Block, Stefanie Weill, Sydney R. Nadal-Vicens, Mireya Pollastri, Alisha R. Rosenquist, J. Niels Goryachev, Sergey Ongur, Dost Sklar, Pamela Perlis, Roy H. Smoller, Jordan W. |
| Organization | International Cohort Collection for Bipolar Disorder Consortium |
| Description | Author Affiliation: Castro VM ( From Research Information Systems and Computing, Partners HealthCare System, Boston) |
| Abstract | OBJECTIVE: The study was designed to validate use of electronic health records (EHRs) for diagnosing bipolar disorder and classifying control subjects. METHOD: EHR data were obtained from a health care system of more than 4.6 million patients spanning more than 20 years. Experienced clinicians reviewed charts to identify text features and coded data consistent or inconsistent with a diagnosis of bipolar disorder. Natural language processing was used to train a diagnostic algorithm with 95% specificity for classifying bipolar disorder. Filtered coded data were used to derive three additional classification rules for case subjects and one for control subjects. The positive predictive value (PPV) of EHR-based bipolar disorder and subphenotype diagnoses was calculated against diagnoses from direct semistructured interviews of 190 patients by trained clinicians blind to EHR diagnosis. RESULTS: The PPV of bipolar disorder defined by natural language processing was 0.85. Coded classification based on strict filtering achieved a value of 0.79, but classifications based on less stringent criteria performed less well. No EHR-classified control subject received a diagnosis of bipolar disorder on the basis of direct interview (PPV=1.0). For most subphenotypes, values exceeded 0.80. The EHR-based classifications were used to accrue 4,500 bipolar disorder cases and 5,000 controls for genetic analyses. CONCLUSIONS: Semiautomated mining of EHRs can be used to ascertain bipolar disorder patients and control subjects with high specificity and predictive value compared with diagnostic interviews. EHRs provide a powerful resource for high-throughput phenotyping for genetic and clinical research. |
| File Format | HTM / HTML |
| ISSN | 0002953X |
| e-ISSN | 15357228 |
| DOI | 10.1176/appi.ajp.2014.14030423 |
| Journal | American Journal of Psychiatry |
| Issue Number | 4 |
| Volume Number | 172 |
| Language | English |
| Publisher | American Psychiatric Association |
| Publisher Date | 2015-04-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Discipline Psychiatry Bipolar Disorder Diagnosis Electronic Health Records Natural Language Processing Algorithms Classification Psychology Case-control Studies Cohort Studies Phenotype Predictive Value Of Tests Reproducibility Of Results Sensitivity And Specificity Research Support, N.i.h., Extramural Validation Studies |
| Content Type | Text |
| Resource Type | Article |
| Subject | Psychiatry and Mental Health |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|