Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Saerens, L. Segher, N. Vervaet, C. Remon, J. P. De Beer, T. |
| Description | Author Affiliation: Saerens L ( Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium. Electronic address: Lien.Saerens@UGent.be.); Segher N ( Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.); Vervaet C ( Laboratory of Pharmaceutical Technology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium. Electronic address: Chris.Vervaet@UGent.be.); Remon JP ( Laboratory of Pharmaceutical Technology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium. Electronic address: Jeanpaul.Remon@UGent.be.); De Beer T ( Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium. Electronic address: Thomas.Debeer@UGent.be.) |
| Abstract | A calibration model for in-line API determination was developed based on Raman spectra collected during hot-melt extrusion. This predictive model was validated by calculating the accuracy profile based on the analysis results of validation experiments. Furthermore, based on the data of the accuracy profile, the measurement uncertainty was determined. Finally, the robustness of the model was evaluated. A Raman probe was implemented in the die of a twin-screw extruder, to monitor the drug concentration during extrusion of physical mixtures containing 15, 20, 25, 30 and 35% (w/w) metoprolol tartrate (MPT) in Eudragit(®) RS PO, an amorphous copolymer of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups, which are present as salts. Several different calibration models for the prediction of the MPT content were developed, based on the use of single spectra or averaged spectra, and using partial least squares (PLS) regression or multivariate curve resolution (MCR). These predictive models were validated by extruding and monitoring mixtures containing 17.5, 22.5, 25.0, 27.5 and 32.5% (w/w) MPT. Each validated concentration was monitored on three different days, by two different operators. The ß-expectation tolerance intervals were calculated for each model and for each of the validated MPT concentration levels (ß was set at 95%), and acceptance limits were set at 10% (relative bias), indicating that at least 95% of future measurements should not deviate more than 10% from the true value. The only model where these acceptance limits were not exceeded was the MCR model based on averaged Raman spectra. The uncertainty measurements for this model showed that the unknown true value can be found at a maximum of ±7.00% around the measured result, with a confidence level of 95%. The robustness of this model was evaluated via an experimental design varying throughput, screw speed and barrel temperature. The robustness designs showed no significant influence of any of the process settings on the predicted concentration values. Raman spectroscopy proved to be a fast, non-destructive and reliable method for the quantification of MPT during hot-melt extrusion. From the accuracy profile of the MCR model based on averaged spectra, it was concluded that for each MPT concentration in the validated concentration range, 95 out 100 future routine measurements will be included within the acceptance limits (10%). |
| File Format | HTM / HTML |
| ISSN | 00032670 |
| Volume Number | 806 |
| e-ISSN | 18734324 |
| Journal | Analytica Chimica Acta |
| Language | English |
| Publisher | Elsevier |
| Publisher Date | 2014-01-02 |
| Publisher Place | Netherlands |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Discipline Analytical Discipline Chemistry Chemistry Techniques, Analytical Methods Drug Industry Metoprolol Analysis Spectrum Analysis, Raman Calibration Hot Temperature Standards Phase Transition Polymethacrylic Acids Stearic Acids Journal Article Validation Studies |
| Content Type | Text |
| Resource Type | Article |
| Subject | Spectroscopy Environmental Chemistry Analytical Chemistry Biochemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|