Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Park, Ji-Woon Kim, Hyeong Rae Hwang, Jungho |
| Description | Author Affiliation: Park JW ( School of Mechanical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea. Electronic address: masterws@yonsei.ac.kr.); Kim HR ( School of Mechanical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea. Electronic address: khr1410@yonsei.ac.kr.); Hwang J ( School of Mechanical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea. Electronic address: hwangjh@yonsei.ac.kr.) |
| Abstract | We present a methodology for continuous and real-time bioaerosol monitoring wherein an aerosol-to-hydrosol sampler is integrated with a bioluminescence detector. Laboratory test was conducted by supplying an air flow with entrained test bacteria (Staphylococcus epidermidis) to the inlet of the sampler. High voltage was applied between the discharge electrode and the ground electrode of the sampler to generate air ions by corona discharge. The bacterial aerosols were charged by the air ions and sampled in a flowing liquid containing both a cell lysis buffer and adenosine triphosphate (ATP) bioluminescence reagents. While the liquid was delivered to the bioluminescence detector, sampled bacteria were dissolved by the cell lysis buffer and ATP was extracted. The ATP was reacted with the ATP bioluminescence reagents, causing light to be emitted. When the concentration of bacteria in the aerosols was varied, the ATP bioluminescence signal in relative light units (RLUs) closely tracked the concentration in particles per unit air volume (# cm ), as measured by an aerosol particle sizer. The total response time required for aerosol sampling and ATP bioluminescence detection increased from 30 s to 2 min for decreasing liquid sampling flow rate from 800 to 200 µLPM, respectively. However, lower concentration of S. epidermidis aerosols was able to be detected with lower liquid sampling flow rate (1 RLU corresponded to 6.5 # cm of S. epidermidis aerosols at 200 µLPM and 25.5 # cm at 800 µLPM). After obtaining all data sets of concentration of S. epidermidis aerosols and concentration of S. epidermidis particles collected in the flowing liquid, it was found that with our bioluminescence detector, 1 RLU corresponded to 1.8 × 10 (±0.2 × 10 ) # mL of S. epidermidis in liquid. After the lab-test with S. epidermidis, our bioaerosol monitoring device was located in the lobby of a building. Air sampling was conducted continuously for 90 min (air flow rate of 8 LPM, liquid flow rate of 200 µLPM) and the ATP bioluminescence signal of indoor bioaerosols was displayed with time. Air sampling was also carried out using the 6th stage of Andersen impactor in which a nutrient agar plate was used for the impaction plate. The sample was cultured at 37 °C for five days for colony counting. As a result, it was found that the variation of the bioluminescence signal closely followed the variation of indoor bioaerosol concentration in colony forming unit (CFU) and 1 RLU corresponded to 1.66 CFU m of indoor bioaerosols. Our method can be used as a trigger in biological air contamination alarm systems. |
| File Format | HTM / HTML |
| ISSN | 00032670 |
| Journal | Analytica Chimica Acta |
| Volume Number | 941 |
| e-ISSN | 18734324 |
| Language | English |
| Publisher | Elsevier |
| Publisher Date | 2016-10-19 |
| Publisher Place | Netherlands |
| Access Restriction | One Nation One Subscription (ONOS) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Spectroscopy Environmental Chemistry Analytical Chemistry Biochemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|