Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Esteban, Santiago Rodríguez Tablado, Manuel Ricci, Ricardo Ignacio Terrasa, Sergio Kopitowski, Karin |
| Abstract | Background The implementation of electronic medical records (EMR) is becoming increasingly common. Error and data loss reduction, patient-care efficiency increase, decision-making assistance and facilitation of event surveillance, are some of the many processes that EMRs help improve. In addition, they show a lot of promise in terms of data collection to facilitate observational epidemiological studies and their use for this purpose has increased significantly over the recent years. Even though the quantity and availability of the data are clearly improved thanks to EMRs, still, the problem of the quality of the data remains. This is especially important when attempting to determine if an event has actually occurred or not. We sought to assess the sensitivity, specificity, and agreement level of a codes-based algorithm for the detection of clinically relevant cardiovascular (CaVD) and cerebrovascular (CeVD) disease cases, using data from EMRs. Methods Three family physicians from the research group selected clinically relevant CaVD and CeVD terms from the international classification of primary care, Second Edition (ICPC-2), the ICD 10 version 2015 and SNOMED-CT 2015 Edition. These terms included both signs, symptoms, diagnoses and procedures associated with CaVD and CeVD. Terms not related to symptoms, signs, diagnoses or procedures of CaVD or CeVD and also those describing incidental findings without clinical relevance were excluded. The algorithm yielded a positive result if the patient had at least one of the selected terms in their medical records, as long as it was not recorded as an error. Else, if no terms were found, the patient was classified as negative. This algorithm was applied to a randomly selected sample of the active patients within the hospital’s HMO by 1/1/2005 that were 40–79 years old, had at least one year of seniority in the HMO and at least one clinical encounter. Thus, patients were classified into four groups: (1) Negative patients (2) Patients with CaVD but without CeVD; (3) Patients with CeVD but without disease CaVD; (4) Patients with both diseases. To facilitate the validation process, a stratified sample was taken so that each of the groups represented approximately 25% of the sample. Manual chart review was used as the gold standard for assessing the algorithm’s performance. One-third of the patients were assigned randomly to each reviewer (Cohen’s kappa 0.91). Both coded and un-coded (free text) sections of the EMR were reviewed. This was done from the first present clinical note in the patients chart to the last one registered prior to 1/1/2005. Results The performance of the algorithm was compared against manual chart review. It yielded high sensitivity (0.99, 95% CI 0.938–0.9971) and acceptable specificity (0.86, 95% CI 0.818–0.895) for detecting cases of CaVD and CeVD combined. A qualitative analysis of the false positives and false negatives was performed. Conclusions We developed a simple algorithm, using only standardized and non-standardized coded terms within an EMR that can properly detect clinically relevant events and symptoms of CaVD and CeVD. We believe that combining it with an analysis of the free text using an NLP approach would yield even better results. |
| Related Links | https://bmcresnotes.biomedcentral.com/counter/pdf/10.1186/s13104-017-2600-2.pdf |
| Ending Page | 7 |
| Page Count | 7 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 17560500 |
| DOI | 10.1186/s13104-017-2600-2 |
| Journal | BMC Research Notes |
| Issue Number | 1 |
| Volume Number | 10 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2017-07-14 |
| Access Restriction | Open |
| Subject Keyword | Biomedicine Medicine Public Health Life Sciences Cardiovascular disease Cerebrovascular disease Electronic phenotyping algorithms Electronic medical records Rule-based algorithm Medicine/Public Health |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biochemistry, Genetics and Molecular Biology Medicine |
| Journal Impact Factor | 1.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|