| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Song, Wei Shang, Wen Li, Chunying Bian, Xinyu Lu, Hong Ma, Jun Yu, Dahai |
| Abstract | Background The purpose of this study was to improve the deep learning (DL) model performance in predicting and classifying IMRT gamma passing rate (GPR) by using input features related to machine parameters and a class balancing technique. Methods A total of 2348 fields from 204 IMRT plans for patients with nasopharyngeal carcinoma were retrospectively collected to form a dataset. Input feature maps, including fluence, leaf gap, leaf speed of both banks, and corresponding errors, were constructed from the dynamic log files. The SHAP framework was employed to compute the impact of each feature on the model output for recursive feature elimination. A series of UNet++ based models were trained on the obtained eight feature sets with three fine-tuning methods including the standard mean squared error (MSE) loss, a re-sampling technique, and a proposed weighted MSE loss (WMSE). Differences in mean absolute error, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were compared between the different models. Results The models trained with feature sets including leaf speed and leaf gap features predicted GPR for failed fields more accurately than the other models (F(7, 147) = 5.378, p < 0.001). The WMSE loss had the highest accuracy in predicting GPR for failed fields among the three fine-tuning methods (F(2, 42) = 14.149, p < 0.001), while an opposite trend was observed in predicting GPR for passed fields (F(2, 730) = 9.907, p < 0.001). The WMSE_FS5 model achieved a superior AUC (0.92) and more balanced sensitivity (0.77) and specificity (0.89) compared to the other models. Conclusions Machine parameters can provide discriminative input features for GPR prediction in DL. The novel weighted loss function demonstrates the ability to balance the prediction and classification accuracy between the passed and failed fields. The proposed approach is able to improve the DL model performance in predicting and classifying GPR, and can potentially be integrated into the plan optimization process to generate higher deliverability plans. Trial registration: This clinical trial was registered in the Chinese Clinical Trial Registry on March 26th, 2020 (registration number: ChiCTR2000031276). https://clinicaltrials.gov/ct2/show/ChiCTR2000031276 |
| Related Links | https://ro-journal.biomedcentral.com/counter/pdf/10.1186/s13014-024-02496-5.pdf |
| Ending Page | 12 |
| Page Count | 12 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| DOI | 10.1186/s13014-024-02496-5 |
| Journal | Radiation Oncology |
| Issue Number | 1 |
| Volume Number | 19 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-07-31 |
| Access Restriction | Open |
| Subject Keyword | Cancer Research Oncology Radiotherapy Imaging Radiology Deep learning Prediction Classification Quality assurance Machine parameters Class imbalance |
| Content Type | Text |
| Resource Type | Article |
| Subject | Radiology, Nuclear Medicine and Imaging Oncology |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|