Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Huang, Ying Feng, Aihui Lin, Yang Gu, Hengle Chen, Hua Wang, Hao Shao, Yan Duan, Yanhua Zhuo, Weihai Xu, Zhiyong |
| Abstract | Background This study was designed to establish radiation pneumonitis (RP) prediction models using dosiomics and/or deep learning-based radiomics (DLR) features based on 3D dose distribution. Methods A total of 140 patients with non-small cell lung cancer who received stereotactic body radiation therapy (SBRT) were retrospectively included in this study. These patients were randomly divided into the training (n = 112) and test (n = 28) sets. Besides, 107 dosiomics features were extracted by Pyradiomics, and 1316 DLR features were extracted by ResNet50. Feature visualization was performed based on Spearman’s correlation coefficients, and feature selection was performed based on the least absolute shrinkage and selection operator. Three different models were constructed based on random forest, including (1) a dosiomics model (a model constructed based on dosiomics features), (2) a DLR model (a model constructed based on DLR features), and (3) a hybrid model (a model constructed based on dosiomics and DLR features). Subsequently, the performance of these three models was compared with receiver operating characteristic curves. Finally, these dosiomics and DLR features were analyzed with Spearman’s correlation coefficients. Results In the training set, the area under the curve (AUC) of the dosiomics, DLR, and hybrid models was 0.9986, 0.9992, and 0.9993, respectively; the accuracy of these three models was 0.9643, 0.9464, and 0.9642, respectively. In the test set, the AUC of these three models was 0.8462, 0.8750, and 0.9000, respectively; the accuracy of these three models was 0.8214, 0.7857, and 0.8571, respectively. The hybrid model based on dosiomics and DLR features outperformed other two models. Correlation analysis between dosiomics features and DLR features showed weak correlations. The dosiomics features that correlated DLR features with the Spearman’s rho |ρ| ≥ 0.8 were all first-order features. Conclusion The hybrid features based on dosiomics and DLR features from 3D dose distribution could improve the performance of RP prediction after SBRT. |
| Related Links | https://ro-journal.biomedcentral.com/counter/pdf/10.1186/s13014-022-02154-8.pdf |
| Ending Page | 9 |
| Page Count | 9 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| DOI | 10.1186/s13014-022-02154-8 |
| Journal | Radiation Oncology |
| Issue Number | 1 |
| Volume Number | 17 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2022-11-17 |
| Access Restriction | Open |
| Subject Keyword | Cancer Research Oncology Radiotherapy Imaging Radiology Radiation pneumonitis prediction 3D dose distribution Dosiomics Deep learning-based radiomics Random forest |
| Content Type | Text |
| Resource Type | Article |
| Subject | Radiology, Nuclear Medicine and Imaging Oncology |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|