Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Peña, Edgar Pelot, Nicole A. Grill, Warren M. |
| Abstract | Background Electrical nerve conduction block has great potential for treatment of disease through reversible and local inactivation of somatic and autonomic nerves. However, the relatively high energy requirements and the presence of undesired excitation at the onset of the kilohertz-frequency (KHF) signals used for block pose obstacles to effective translation. Frequency, electrode geometry, and waveform shape are known to influence block threshold and onset response, but available data provide a limited understanding of how to select these parameters to optimize nerve block. Methods We evaluated KHF nerve block in rat tibial nerve across frequencies (5–60 kHz), electrode geometries (monopolar, bipolar, and tripolar), and waveform shapes. We present a novel Fourier-based method for constructing composite signals that systematically sample the KHF waveform design space. Results The lowest frequencies capable of blocking (5–16 kHz) were not the most energy-efficient among the tested frequencies. Further, bipolar cuffs required the largest current and power to block, monopolar cuffs required the lowest current, and both tripolar and monopolar cuffs required the lowest power. Tripolar cuffs produced the smallest onset response across frequencies. Composite signals comprised of a first harmonic sinusoid at fundamental frequency (f0) superposed on a second harmonic sinusoid at 2f0 could block at lower threshold and lower onset response compared to the constituent sinusoids alone. This effect was strongly dependent on the phase of the second harmonic and on the relative amplitudes of the first and second harmonics. This effect was also dependent on electrode geometry: monopolar and tripolar cuffs showed clear composite signal effects in most experiments; bipolar cuffs showed no clear effects in most experiments. Conclusions Our data provide novel information about block threshold and onset response at the boundary of frequencies that can block. Our results also show an interaction between spatial (cuff geometry) and temporal (frequency and waveform shape) parameters. Finally, while previous studies suggested that temporal parameters could reduce onset response only in exchange for increased block threshold (or vice versa), our results show that waveform shape influences KHF response in ways that can be exploited to reduce both energy and onset responses. |
| Related Links | https://jneuroengrehab.biomedcentral.com/counter/pdf/10.1186/s12984-023-01195-8.pdf |
| Ending Page | 18 |
| Page Count | 18 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 17430003 |
| DOI | 10.1186/s12984-023-01195-8 |
| Journal | Journal of NeuroEngineering and Rehabilitation |
| Issue Number | 1 |
| Volume Number | 20 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2023-06-05 |
| Access Restriction | Open |
| Subject Keyword | Neurosciences Neurology Rehabilitation Medicine Biomedical Engineering and Bioengineering Kilohertz-frequency nerve block Frequency effects Waveform design Onset response Energy efficiency |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Rehabilitation |
| Journal Impact Factor | 5.2/2023 |
| 5-Year Journal Impact Factor | 5.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|