Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Canete, Santiago Jacobs, Daniel A. |
| Abstract | Background Self-paced treadmills (SPT) can provide an engaging setting for gait rehabilitation by responding directly to the user’s intent to modulate the external environment and internal effort. They also can improve gait analyses by allowing scientists and clinicians to directly measure the effect of an intervention on walking velocity. Unfortunately, many common SPT algorithms are not suitable for individuals with gait impairment because they are designed for symmetric gait patterns. When the user’s gait is asymmetric due to paresis or if it contains large accelerations, the performance is diminished. Creating and validating an SPT that is suitable for asymmetric gait will improve our ability to study rehabilitation interventions in populations with gait impairment. The objective of this study was to test and validate a novel self-paced treadmill on both symmetric and asymmetric gait patterns and evaluate differences in gait kinematics, kinetics, and muscle activity between fixed-speed and self-paced treadmill walking. Methods We collected motion capture, ground reaction force data, and muscle activity from 6 muscles in the dominant leg during walking from 8 unimpaired subjects. In the baseline condition, the subjects walked at 3 fixed-speeds normalized to their leg length as Froude numbers. We developed a novel kinematic method for increasing the accuracy of the user’s estimated walking velocity and compared our method against other published algorithms at each speed. Afterward, subjects walked on the SPT while matching their walking speed to a given target velocity using visual feedback of the treadmill speed. We evaluated the SPT by measuring steady-state error and the number of steps to reach the desired speed. We split the gait cycle into 7 phases and compared the kinematic, kinetic, and muscle activity between the fixed speed and self-paced mode in each phase. Then, we validated the performance of the SPT for asymmetric gait by having subjects walk on the SPT while wearing a locked-knee brace set to 0° on the non-dominant leg. Results Our SPT enabled controlled walking for both symmetric and asymmetric gait patterns. Starting from rest, subjects were able to control the SPT to reach the targeted speeds using visual feedback in 13–21 steps. With the locked knee brace, subjects controlled the treadmill with substantial step length and step velocity asymmetry. One subject was able to execute a step-to gait and halt the treadmill on heel-strikes with the braced leg. Our kinematic correction for step-length outperformed the competing algorithms by significantly reducing the velocity estimation error at the tested velocities. The joint kinematics, joint torques, and muscle activity were generally similar between fixed-speed and self-paced walking. Statistically significant differences were found in 5 of 63 tests for joint kinematics, 2 of 63 tests for joint torques, and 9 of 126 tests for muscle activity. The differences that were statistically significant were not found across all speeds and were generally small enough to be of limited clinical relevance. Conclusions We present a validated method for implementing a self-paced treadmill for asymmetric and symmetric gaits. As a result of the increased accuracy of our estimation algorithm, our SPT produced controlled walking without including a position feedback controller, thereby reducing the influence of the controller on measurements of the user’s true walking speed. Our method relies only on a kinematic correction to step length and step time which can support transfer to systems outside of the laboratory for symmetric and asymmetric gaits in clinical populations. |
| Related Links | https://jneuroengrehab.biomedcentral.com/counter/pdf/10.1186/s12984-021-00825-3.pdf |
| Ending Page | 15 |
| Page Count | 15 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 17430003 |
| DOI | 10.1186/s12984-021-00825-3 |
| Journal | Journal of NeuroEngineering and Rehabilitation |
| Issue Number | 1 |
| Volume Number | 18 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2021-02-05 |
| Access Restriction | Open |
| Subject Keyword | Neurosciences Neurology Rehabilitation Medicine Biomedical Engineering and Bioengineering Gait Asymmetrya Treadmill Self-paced Velocity control |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Rehabilitation |
| Journal Impact Factor | 5.2/2023 |
| 5-Year Journal Impact Factor | 5.6/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|