| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Zhang, Xuan Wang, Jun Li, Jing Chen, Wen Liu, Changning |
| Abstract | Background Long noncoding RNAs (lncRNAs) are widely involved in the initiation and development of cancer. Although some computational methods have been proposed to identify cancer-related lncRNAs, there is still a demanding to improve the prediction accuracy and efficiency. In addition, the quick-update data of cancer, as well as the discovery of new mechanism, also underlay the possibility of improvement of cancer-related lncRNA prediction algorithm. In this study, we introduced CRlncRC, a novel Cancer-Related lncRNA Classifier by integrating manifold features with five machine-learning techniques. Results CRlncRC was built on the integration of genomic, expression, epigenetic and network, totally in four categories of features. Five learning techniques were exploited to develop the effective classification model including Random Forest (RF), Naïve bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR) and K-Nearest Neighbors (KNN). Using ten-fold cross-validation, we showed that RF is the best model for classifying cancer-related lncRNAs (AUC = 0.82). The feature importance analysis indicated that epigenetic and network features play key roles in the classification. In addition, compared with other existing classifiers, CRlncRC exhibited a better performance both in sensitivity and specificity. We further applied CRlncRC to lncRNAs from the TANRIC (The Atlas of non-coding RNA in Cancer) dataset, and identified 121 cancer-related lncRNA candidates. These potential cancer-related lncRNAs showed a certain kind of cancer-related indications, and many of them could find convincing literature supports. Conclusions Our results indicate that CRlncRC is a powerful method for identifying cancer-related lncRNAs. Machine-learning-based integration of multiple features, especially epigenetic and network features, had a great contribution to the cancer-related lncRNA prediction. RF outperforms other learning techniques on measurement of model sensitivity and specificity. In addition, using CRlncRC method, we predicted a set of cancer-related lncRNAs, all of which displayed a strong relevance to cancer as a valuable conception for the further cancer-related lncRNA function studies. |
| Related Links | https://bmcmedgenomics.biomedcentral.com/counter/pdf/10.1186/s12920-018-0436-9.pdf |
| Ending Page | 112 |
| Page Count | 14 |
| Starting Page | 99 |
| File Format | HTM / HTML |
| ISSN | 17558794 |
| DOI | 10.1186/s12920-018-0436-9 |
| Journal | BMC Medical Genomics |
| Issue Number | 6 |
| Volume Number | 11 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2018-12-31 |
| Access Restriction | Open |
| Subject Keyword | Human Genetics Microarrays Gene Expression Cancer-related LncRNA Classification Integrated features Machine learning |
| Content Type | Text |
| Resource Type | Article |
| Subject | Genetics (clinical) Genetics |
| Journal Impact Factor | 2.1/2023 |
| 5-Year Journal Impact Factor | 2.5/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|