Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Langenberger, Benedikt Thoma, Andreas Vogt, Verena |
| Abstract | Objectives To systematically review studies using machine learning (ML) algorithms to predict whether patients undergoing total knee or total hip arthroplasty achieve an improvement as high or higher than the minimal clinically important differences (MCID) in patient reported outcome measures (PROMs) (classification problem). Methods Studies were eligible to be included in the review if they collected PROMs both pre- and postintervention, reported the method of MCID calculation and applied ML. ML was defined as a family of models which automatically learn from data when selecting features, identifying nonlinear relations or interactions. Predictive performance must have been assessed using common metrics. Studies were searched on MEDLINE, PubMed Central, Web of Science Core Collection, Google Scholar and Cochrane Library. Study selection and risk of bias assessment (ROB) was conducted by two independent researchers. Results 517 studies were eligible for title and abstract screening. After screening title and abstract, 18 studies qualified for full-text screening. Finally, six studies were included. The most commonly applied ML algorithms were random forest and gradient boosting. Overall, eleven different ML algorithms have been applied in all papers. All studies reported at least fair predictive performance, with two reporting excellent performance. Sample size varied widely across studies, with 587 to 34,110 individuals observed. PROMs also varied widely across studies, with sixteen applied to TKA and six applied to THA. There was no single PROM utilized commonly in all studies. All studies calculated MCIDs for PROMs based on anchor-based or distribution-based methods or referred to literature which did so. Five studies reported variable importance for their models. Two studies were at high risk of bias. Discussion No ML model was identified to perform best at the problem stated, nor can any PROM said to be best predictable. Reporting standards must be improved to reduce risk of bias and improve comparability to other studies. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-022-01751-7.pdf |
| Ending Page | 14 |
| Page Count | 14 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-022-01751-7 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 22 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2022-01-20 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|