Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Metsker, Oleg Magoev, Kirill Yakovlev, Alexey Yanishevskiy, Stanislav Kopanitsa, Georgy Kovalchuk, Sergey Krzhizhanovskaya, Valeria V. |
| Abstract | Background Methods of data mining and analytics can be efficiently applied in medicine to develop models that use patient-specific data to predict the development of diabetic polyneuropathy. However, there is room for improvement in the accuracy of predictive models. Existing studies of diabetes polyneuropathy considered a limited number of predictors in one study to enable a comparison of efficiency of different machine learning methods with different predictors to find the most efficient one. The purpose of this study is the implementation of machine learning methods for identifying the risk of diabetes polyneuropathy based on structured electronic medical records collected in databases of medical information systems. Methods For the purposes of our study, we developed a structured procedure for predictive modelling, which includes data extraction and preprocessing, model adjustment and performance assessment, selection of the best models and interpretation of results. The dataset contained a total number of 238,590 laboratory records. Each record 27 laboratory tests, age, gender and presence of retinopathy or nephropathy). The records included information about 5846 patients with diabetes. Diagnosis served as a source of information about the target class values for classification. Results It was discovered that inclusion of two expressions, namely “nephropathy” and “retinopathy” allows to increase the performance, achieving up to 79.82% precision, 81.52% recall, 80.64% F1 score, 82.61% accuracy, and 89.88% AUC using the neural network classifier. Additionally, different models showed different results in terms of interpretation significance: random forest confirmed that the most important risk factor for polyneuropathy is the increased neutrophil level, meaning the presence of inflammation in the body. Linear models showed linear dependencies of the presence of polyneuropathy on blood glucose levels, which is confirmed by the clinical interpretation of the importance of blood glucose control. Conclusion Depending on whether one needs to identify pathophysiological mechanisms for one’s prospective study or identify early or late predictors, the choice of model will vary. In comparison with the previous studies, our research makes a comprehensive comparison of different decisions using a large and well-structured dataset applied to different decision support tasks. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-020-01215-w.pdf |
| Ending Page | 15 |
| Page Count | 15 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-020-01215-w |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 20 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2020-08-24 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Polyneuropathy Machine learning Risk factors Clinical decision support |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|