Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Chen, Zhiwei He, Zhe Liu, Xiuwen Bian, Jiang |
| Abstract | Background In the past few years, neural word embeddings have been widely used in text mining. However, the vector representations of word embeddings mostly act as a black box in downstream applications using them, thereby limiting their interpretability. Even though word embeddings are able to capture semantic regularities in free text documents, it is not clear how different kinds of semantic relations are represented by word embeddings and how semantically-related terms can be retrieved from word embeddings. Methods To improve the transparency of word embeddings and the interpretability of the applications using them, in this study, we propose a novel approach for evaluating the semantic relations in word embeddings using external knowledge bases: Wikipedia, WordNet and Unified Medical Language System (UMLS). We trained multiple word embeddings using health-related articles in Wikipedia and then evaluated their performance in the analogy and semantic relation term retrieval tasks. We also assessed if the evaluation results depend on the domain of the textual corpora by comparing the embeddings of health-related Wikipedia articles with those of general Wikipedia articles. Results Regarding the retrieval of semantic relations, we were able to retrieve semanti. Meanwhile, the two popular word embedding approaches, Word2vec and GloVe, obtained comparable results on both the analogy retrieval task and the semantic relation retrieval task, while dependency-based word embeddings had much worse performance in both tasks. We also found that the word embeddings trained with health-related Wikipedia articles obtained better performance in the health-related relation retrieval tasks than those trained with general Wikipedia articles. Conclusion It is evident from this study that word embeddings can group terms with diverse semantic relations together. The domain of the training corpus does have impact on the semantic relations represented by word embeddings. We thus recommend using domain-specific corpus to train word embeddings for domain-specific text mining tasks. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-018-0630-x.pdf |
| Ending Page | 68 |
| Page Count | 16 |
| Starting Page | 53 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-018-0630-x |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 2 |
| Volume Number | 18 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2018-07-23 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Word embedding Semantic relation UMLS WordNet |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|