Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Lin, Wen-Yang Yang, Duen-Chuan Wang, Jie-Teng |
| Abstract | Background To facilitate long-term safety surveillance of marketing drugs, many spontaneously reporting systems (SRSs) of ADR events have been established world-wide. Since the data collected by SRSs contain sensitive personal health information that should be protected to prevent the identification of individuals, it procures the issue of privacy preserving data publishing (PPDP), that is, how to sanitize (anonymize) raw data before publishing. Although much work has been done on PPDP, very few studies have focused on protecting privacy of SRS data and none of the anonymization methods is favorable for SRS datasets, due to which contain some characteristics such as rare events, multiple individual records, and multi-valued sensitive attributes. Methods We propose a new privacy model called MS(k, θ * )-bounding for protecting published spontaneous ADE reporting data from privacy attacks. Our model has the flexibility of varying privacy thresholds, i.e., θ * , for different sensitive values and takes the characteristics of SRS data into consideration. We also propose an anonymization algorithm for sanitizing the raw data to meet the requirements specified through the proposed model. Our algorithm adopts a greedy-based clustering strategy to group the records into clusters, conforming to an innovative anonymization metric aiming to minimize the privacy risk as well as maintain the data utility for ADR detection. Empirical study was conducted using FAERS dataset from 2004Q1 to 2011Q4. We compared our model with four prevailing methods, including k-anonymity, (X, Y)-anonymity, Multi-sensitive l-diversity, and (α, k)-anonymity, evaluated via two measures, Danger Ratio (DR) and Information Loss (IL), and considered three different scenarios of threshold setting for θ * , including uniform setting, level-wise setting and frequency-based setting. We also conducted experiments to inspect the impact of anonymized data on the strengths of discovered ADR signals. Results With all three different threshold settings for sensitive value, our method can successively prevent the disclosure of sensitive values (nearly all observed DRs are zeros) without sacrificing too much of data utility. With non-uniform threshold setting, level-wise or frequency-based, our MS(k, θ *)-bounding exhibits the best data utility and the least privacy risk among all the models. The experiments conducted on selected ADR signals from MedWatch show that only very small difference on signal strength (PRR or ROR) were observed. The results show that our method can effectively prevent the disclosure of patient sensitive information without sacrificing data utility for ADR signal detection. Conclusions We propose a new privacy model for protecting SRS data that possess some characteristics overlooked by contemporary models and an anonymization algorithm to sanitize SRS data in accordance with the proposed model. Empirical evaluation on the real SRS dataset, i.e., FAERS, shows that our method can effectively solve the privacy problem in SRS data without influencing the ADR signal strength. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-016-0293-4.pdf |
| Ending Page | 35 |
| Page Count | 15 |
| Starting Page | 21 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-016-0293-4 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 16 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2016-07-18 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Adverse drug reaction ADR signal detection Data anonymization Privacy preserving data publishing Spontaneous reporting system |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|